Do you want to publish a course? Click here

Wide Angle Dynamically Tunable Enhanced Infrared Absorption on Large Area Nanopatterned Graphene

113   0   0.0 ( 0 )
 Added by Alireza Safaei
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Enhancing light-matter interaction by exciting Dirac plasmons on nanopatterned monolayer graphene is an efficient route to achieve high infrared absorption. Here, we designed and fabricated the hexagonal planar arrays of nanohole and nanodisk with and without optical cavity to excite Dirac plasmons on the patterned graphene and investigated the role of plasmon lifetime, extinction cross-section, incident light polarization, the angle of incident of light and pattern dimensions on the light absorption spectra.



rate research

Read More

Chemical vapor deposited graphene is nanopatterned by a spherical block-copolymer etch mask. The use of spherical rather than cylindrical block copolymers allows homogeneous patterning of cm-scale areas without any substrate surface treatment. Raman spectroscopy was used to study the controlled generation of point defects in the graphene lattice with increasing etching time, confirming that alongside the nanomesh patterning, the nanopatterned CVD graphene presents a high defect density between the mesh holes. The nanopatterned samples showed sensitivities for NO2 of more than one order of magnitude higher than for non-patterned graphene. NO2 concentrations as low as 300 ppt were detected with an ultimate detection limit of tens of ppt. This is so far the smallest value reported for not UV illuminated graphene chemiresistive NO2 gas sensors. The drastic improvement in the gas sensitivity is believed to be due to the high adsorption site density, thanks to the combination of edge sites and point defect sites. This work opens the possibility of large area fabrication of nanopatterned graphene with extreme density of adsorption sites for sensing applications.
We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to $3000$ cm$^2$V$^{-1}$s$^{-1}$), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an in-plane electric field. The localized surface plasmons (LSPs) on the NPG sheet allow for the control and tuning of the thermal emission spectrum in the wavelength regime from 3 $mu$m to 12 $mu$m. The LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared (NIR) by a factor of 100. A maximum emission power per area of 11x10^3 W/m$^2$ at $T=2000$ K for a bias voltage of $V=23$ V is achieved by Joule heating. By generalizing Plancks theory and considering the nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in graphene in RPA, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13 $mu$m and 150 $mu$m, respectively, providing the opportunity to create phased arrays. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between $12^circ$ and $80^circ$ by tuning the Fermi energy. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain (FDTD) calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.
Van der Waals heterostructures obtained by artificially stacking two-dimensional crystals represent the frontier of material engineering, demonstrating properties superior to those of the starting materials. Fine control of the interlayer twist angle has opened new possibilities for tailoring the optoelectronic properties of these heterostructures. Twisted bilayer graphene with a strong interlayer coupling is a prototype of twisted heterostructure inheriting the intriguing electronic properties of graphene. Understanding the effects of the twist angle on its out-of-equilibrium optical properties is crucial for devising optoelectronic applications. With this aim, we here combine excitation-resolved hot photoluminescence with femtosecond transient absorption microscopy. The hot charge carrier distribution induced by photo-excitation results in peaked absorption bleaching and photo-induced absorption bands, both with pronounced twist angle dependence. Theoretical simulations of the electronic band structure and of the joint density of states enable to assign these bands to the blocking of interband transitions at the van Hove singularities and to photo-activated intersubband transitions. The tens of picoseconds relaxation dynamics of the observed bands is attributed to the angle-dependence of electron and phonon heat capacities of twisted bilayer graphene.
Plasmons in graphene nanostructures show great promise for mid-infrared applications ranging from a few to tens of microns. However, mid-infrared plasmonic resonances in graphene nanostructures are usually weak and narrow-banded, limiting their potential in light manipulation and detection. Here we investigate the coupling among graphene plasmonic nanostructures and further show that by engineering the coupling, enhancement of light-graphene interaction strength and broadening of spectral width can be achieved simultaneously. Leveraging the concept of coupling, we demonstrate a hybrid 2-layer graphene nanoribbon array which shows 5 to 7% extinction within the entire 8 to 14 {mu}m (~700 to 1250 cm-1) wavelength range, covering one of the important atmosphere infrared transmission windows. Such coupled hybrid graphene plasmonic nanostructures may find applications in infrared sensing and free-space communications.
Capabilities of highly sensitive surface-enhanced infrared absorption (SEIRA) spectroscopy are demonstrated by exploiting large-area templates ($cm^2$) based on self-organized (SO) nanorod antennas. We engineered highly dense arrays of gold nanorod antennas featuring polarization-sensitive localized plasmon resonances, tunable over a broadband near- and mid-infrared (IR) spectrum, in overlap with the so-called functional group window. We demonstrate polarization-sensitive SEIRA activity, homogeneous over macroscopic areas and stable in time, by exploiting prototype self-assembled monolayers of IR-active octadecanthiol (ODT) molecules. The strong coupling between the plasmonic excitation and molecular stretching modes gives rise to characteristic Fano resonances in SEIRA. The SO engineering of the active hotspots in the arrays allows us to achieve signal amplitude improved up to 5.7%. This figure is competitive to the response of lithographic nanoantennas and is stable when the optical excitation spot varies from the micro- to macroscale, thus enabling highly sensitive SEIRA spectroscopy with cost-effective nanosensor devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا