Do you want to publish a course? Click here

RisGraph: A Real-Time Streaming System for Evolving Graphs to Support Sub-millisecond Per-update Analysis at Millions Ops/s

93   0   0.0 ( 0 )
 Added by Guanyu Feng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Evolving graphs in the real world are large-scale and constantly changing, as hundreds of thousands of updates may come every second. Monotonic algorithms such as Reachability and Shortest Path are widely used in real-time analytics to gain both static and temporal insights and can be accelerated by incremental computing. Existing streaming systems adopt the incremental computing model and achieve either low latency or high throughput, but not both. However, both high throughput and low latency are required in real scenarios such as financial fraud detection. This paper presents RisGraph, a real-time streaming system that provides low-latency analysis for each update with high throughput. RisGraph addresses the challenge with localized data access and inter-update parallelism. We propose a data structure named Indexed Adjacency Lists and use sparse arrays and Hybrid Parallel Mode to enable localized data access. To achieve inter-update parallelism, we propose a domain-specific concurrency control mechanism based on the classification of safe and unsafe updates. Experiments show that RisGraph can ingest millions of updates per second for graphs with several hundred million vertices and billions of edges, and the P999 processing time latency is within 20 milliseconds. RisGraph achieves orders-of-magnitude improvement on throughput when analyses are executed for each update without batching and performs better than existing systems with batches of up to 20 million updates.



rate research

Read More

The growing popularity of dynamic applications such as social networks provides a promising way to detect valuable information in real time. Efficient analysis over high-speed data from dynamic applications is of great significance. Data from these dynamic applications can be easily modeled as streaming graph. In this paper, we study the subgraph (isomorphism) search over streaming graph data that obeys timing order constraints over the occurrence of edges in the stream. We propose a data structure and algorithm to efficiently answer subgraph search and introduce optimizations to greatly reduce the space cost, and propose concurrency management to improve system throughput. Extensive experiments on real network traffic data and synthetic social streaming data confirms the efficiency and effectiveness of our solution.
Arguably data is the new natural resource in the enterprise world with an unprecedented degree of proliferation. But to derive real-time actionable insights from the data, it is important to bridge the gap between managing the data that is being updated at a high velocity (i.e., OLTP) and analyzing a large volume of data (i.e., OLAP). However, there has been a divide where specialized solutions were often deployed to support either OLTP or OLAP workloads but not both; thus, limiting the analysis to stale and possibly irrelevant data. In this paper, we present Lineage-based Data Store (L-Store) that combines the real-time processing of transactional and analytical workloads within a single unified engine by introducing a novel lineage-based storage architecture. By exploiting the lineage, we develop a contention-free and lazy staging of columnar data from a write-optimized form (suitable for OLTP) into a read-optimized form (suitable for OLAP) in a transactionally consistent approach that also supports querying and retaining the current and historic data. Our working prototype of L-Store demonstrates its superiority compared to state-of-the-art approaches under a comprehensive experimental evaluation.
We study the hop-constrained s-t path enumeration (HcPE) problem, which takes a graph $G$, two distinct vertices $s,t$ and a hop constraint $k$ as input, and outputs all paths from $s$ to $t$ whose length is at most $k$. The state-of-the-art algorithms suffer from severe performance issues caused by the costly pruning operations during enumeration for the workloads with the large search space. Consequently, these algorithms hardly meet the real-time constraints of many online applications. In this paper, we propose PathEnum, an efficient index-based algorithm towards real-time HcPE. For an input query, PathEnum first builds a light-weight index aiming to reduce the number of edges involved in the enumeration, and develops efficient index-based approaches for enumeration, one based on depth-first search and the other based on joins. We further develop a query optimizer based on a join-based cost model to optimize the search order. We conduct experiments with 15 real-world graphs. Our experiment results show that PathEnum outperforms the state-of-the-art approaches by orders of magnitude in terms of the query time, throughput and response time.
We study persistent query evaluation over streaming graphs, which is becoming increasingly important. We focus on navigational queries that determine if there exists a path between two entities that satisfies a user-specified constraint. We adopt the Regular Path Query (RPQ) model that specifies navigational patterns with labeled constraints. We propose deterministic algorithms to efficiently evaluate persistent RPQs under both arbitrary and simple path semantics in a uniform manner. Experimental analysis on real and synthetic streaming graphs shows that the proposed algorithms can process up to tens of thousands of edges per second and efficiently answer RPQs that are commonly used in real-world workloads.
While experiments on fusion plasmas produce high-dimensional data time series with ever increasing magnitude and velocity, data analysis has been lagging behind this development. For example, many data analysis tasks are often performed in a manual, ad-hoc manner some time after an experiment. In this article we introduce the DELTA framework that facilitates near real-time streaming analysis of big and fast fusion data. By streaming measurement data from fusion experiments to a high-performance compute center, DELTA allows to perform demanding data analysis tasks in between plasma pulses. This article describe the modular and expandable software architecture of DELTA and presents performance benchmarks of its individual components as well as of entire workflows. Our focus is on the streaming analysis of ECEi data measured at KSTAR on NERSCs supercomputers and we routinely achieve data transfer rates of about 500 Megabyte per second. We show that a demanding turbulence analysis workload can be distributed among multiple GPUs and executes in under 5 minutes. We further discuss how DELTA uses modern database systems and container orchestration services to provide web-based real-time data visualization. For the case of ECEi data we demonstrate how data visualizations can be augmented with outputs from machine learning models. By providing session leaders and physics operators results of higher order data analysis using live visualization they may monitor the evolution of a long-pulse discharge in near real-time and may make more informed decision on how to configure the machine for the next shot.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا