Do you want to publish a course? Click here

Characterization of High-Purity Germanium Detectors with Amorphous Germanium Contacts in Cryogenic Liquids

80   0   0.0 ( 0 )
 Added by Jing Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

For the first time, planar high-purity germanium detectors with thin amorphous germanium contacts were successfully operated directly in liquid nitrogen and liquid argon in a cryostat at the Max-Planck-Institut fuer Physics in Munich. The detectors were fabricated at the Lawrence Berkeley National Laboratory and the University of South Dakota, using crystals grown at the University of South Dakota. They survived long-distance transportation and multiple thermal cycles in both cryogenic liquids and showed reasonable leakage currents and spectroscopic performance. Also discussed are the pros and cons of using thin amorphous semiconductor materials as an alternative contact technology in large-scale germanium experiments searching for physics beyond the Standard Model.

rate research

Read More

Large, high-purity, germanium (HPGe) detectors are needed for neutrinoless double-beta decay and dark matter experiments. Currently, large (> 4 inches in diameter) HPGe crystals can be grown at the University of South Dakota (USD). We verify that the quality of the grown crystals is sufficient for use in large detectors by fabricating and characterizing smaller HPGe detectors made from those crystals. We report the results from eight detectors fabricated over six months using crystals grown at USD. Amorphous germanium (a-Ge) contacts are used for blocking both electrons and holes. Two types of geometry were used to fabricate HPGe detectors. As a result, the fabrication process of small planar detectors at USD is discussed in great detail. The impact of the procedure and geometry on the detector performance was analyzed for eight detectors. We characterized the detectors by measuring the leakage current, capacitance, and energy resolution at 662 keV with a Cs-137 source. Four detectors show good performance, which indicates that crystals grown at USD are suitable for making HPGe detectors.
The characterization of detectors fabricated from home-grown crystals is the most direct way to study crystal properties. We fabricated planar detectors from high-purity germanium (HPGe) crystals grown at the University of South Dakota (USD). In the fabrication process, a HPGe crystal slice cut from a USD-grown crystal was coated with a high resistivity thin film of amorphous Ge (a-Ge) followed by depositing a thin layer of aluminum on top of the a-Ge film to define the physical area of the contacts. We investigated the detector performance including the $I$-$V$ characteristics, $C$-$V$ characteristics and spectroscopy measurements for a few detectors. The results document the good quality of the USD-grown crystals and electrical contacts.
High Purity germanium point-contact detectors have low energy thresholds and excellent energy resolution over a wide energy range, and are thus widely used in nuclear and particle physics. In rare event searches, such as neutrinoless double beta decay, the point-contact geometry is of particular importance since it allows for pulse-shape discrimination, and therefore for a significant background reduction. In this paper we investigate the pulse-shape discrimination performance of ultra-high purity germanium point contact detectors. It is demonstrated that a minimal net impurity concentration is required to meet the pulse-shape performance requirements.
The goal of the textsc{Majorana} textsc{Demonstrator} project is to search for 0$ ubetabeta$ decay in $^{76}mathrm{Ge}$. Of all candidate isotopes for 0$ ubetabeta$, $^{76}mathrm{Ge}$ has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0$ ubetabeta$, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the textsc{Majorana} collaboration made with enriched germanium detectors manufactured by ORTEC$^{circledR}$. The process from production, to characterization and integration in textsc{Majorana} mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.
123 - B. Blank , J. Souin , P. Ascher 2014
A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and gamma-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived on-line sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed beta decays for tests of the weak-interaction standard model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا