Do you want to publish a course? Click here

Developing a Multilingual Annotated Corpus of Misogyny and Aggression

245   0   0.0 ( 0 )
 Added by Ritesh Kumar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we discuss the development of a multilingual annotated corpus of misogyny and aggression in Indian English, Hindi, and Indian Bangla as part of a project on studying and automatically identifying misogyny and communalism on social media (the ComMA Project). The dataset is collected from comments on YouTube videos and currently contains a total of over 20,000 comments. The comments are annotated at two levels - aggression (overtly aggressive, covertly aggressive, and non-aggressive) and misogyny (gendered and non-gendered). We describe the process of data collection, the tagset used for annotation, and issues and challenges faced during the process of annotation. Finally, we discuss the results of the baseline experiments conducted to develop a classifier for misogyny in the three languages.



rate research

Read More

This paper presents a large-scale corpus for non-task-oriented dialogue response selection, which contains over 27K distinct prompts more than 82K responses collected from social media. To annotate this corpus, we define a 5-grade rating scheme: bad, mediocre, acceptable, good, and excellent, according to the relevance, coherence, informativeness, interestingness, and the potential to move a conversation forward. To test the validity and usefulness of the produced corpus, we compare various unsupervised and supervised models for response selection. Experimental results confirm that the proposed corpus is helpful in training response selection models.
Multilingual acoustic models have been successfully applied to low-resource speech recognition. Most existing works have combined many small corpora together and pretrained a multilingual model by sampling from each corpus uniformly. The model is eventually fine-tuned on each target corpus. This approach, however, fails to exploit the relatedness and similarity among corpora in the training set. For example, the target corpus might benefit more from a corpus in the same domain or a corpus from a close language. In this work, we propose a simple but useful sampling strategy to take advantage of this relatedness. We first compute the corpus-level embeddings and estimate the similarity between each corpus. Next, we start training the multilingual model with uniform-sampling from each corpus at first, then we gradually increase the probability to sample from related corpora based on its similarity with the target corpus. Finally, the model would be fine-tuned automatically on the target corpus. Our sampling strategy outperforms the baseline multilingual model on 16 low-resource tasks. Additionally, we demonstrate that our corpus embeddings capture the language and domain information of each corpus.
Machine translation has been a major motivation of development in natural language processing. Despite the burgeoning achievements in creating more efficient machine translation systems thanks to deep learning methods, parallel corpora have remained indispensable for progress in the field. In an attempt to create parallel corpora for the Kurdish language, in this paper, we describe our approach in retrieving potentially-alignable news articles from multi-language websites and manually align them across dialects and languages based on lexical similarity and transliteration of scripts. We present a corpus containing 12,327 translation pairs in the two major dialects of Kurdish, Sorani and Kurmanji. We also provide 1,797 and 650 translation pairs in English-Kurmanji and English-Sorani. The corpus is publicly available under the CC BY-NC-SA 4.0 license.
Kurdish is a less-resourced language consisting of different dialects written in various scripts. Approximately 30 million people in different countries speak the language. The lack of corpora is one of the main obstacles in Kurdish language processing. In this paper, we present KTC-the Kurdish Textbooks Corpus, which is composed of 31 K-12 textbooks in Sorani dialect. The corpus is normalized and categorized into 12 educational subjects containing 693,800 tokens (110,297 types). Our resource is publicly available for non-commercial use under the CC BY-NC-SA 4.0 license.
Machine translation is highly sensitive to the size and quality of the training data, which has led to an increasing interest in collecting and filtering large parallel corpora. In this paper, we propose a new method for this task based on multilingual sentence embeddings. In contrast to previous approaches, which rely on nearest neighbor retrieval with a hard threshold over cosine similarity, our proposed method accounts for the scale inconsistencies of this measure, considering the margin between a given sentence pair and its closest candidates instead. Our experiments show large improvements over existing methods. We outperform the best published results on the BUCC mining task and the UN reconstruction task by more than 10 F1 and 30 precision points, respectively. Filtering the English-German ParaCrawl corpus with our approach, we obtain 31.2 BLEU points on newstest2014, an improvement of more than one point over the best official filtered version.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا