No Arabic abstract
We define derived Poincare--Birkhoff--Witt maps of dg operads or derived PBW maps, for short, which extend the definition of PBW maps between operads of V.~Dotsenko and the second author in 1804.06485, with the purpose of studying the universal enveloping algebra of dg Lie algebras as a functor on the homotopy category. Our main result shows that the map from the homotopy Lie operad to the homotopy associative operad is derived PBW, which gives us an amenable description of the homology of the universal envelope of an $L_infty$-algebra in the sense of Lada--Markl. We deduce from this several known results involving universal envelopes of $L_infty$-algebras of V. Baranovsky and J. Moreno-Fernandez, and extend D. Quillens classical quasi-isomorphism $mathcal C longrightarrow BU$ from dg Lie algebras to $L_infty$-algebras; this confirms a conjecture of J. Moreno-Fernandez.
We prove a version of the Poincare-Birkhoff-Witt Theorem for profinite pronilpotent Lie algebras in which their symmetric and universal enveloping algebras are replaced with appropriate formal analogues and discuss some immediate corollaries of this result.
In these lectures, we provide a toolkit to work with Chow-Witt groups, and more generally with the homology and cohomology of the Rost-Schmid complex associated to Milnor-Witt $K$-theory.
We compute Witt groups of maximal isotropic Grassmannians, aka. spinor varieties. They are examples of type D homogenuous varieties. Our method relies on the Blow-up setup of Balmer-Calm`es, and we investigate the connecting homomorphism via the projective bundle formula of Walter-Nenashev, the projection formula of Calm`es-Hornbostel and the excess intersection formula of Fasel. The computation in the Type D case can be presented by so called even shifted young diagrams.
Quantum manifestations of the dynamics around resonant tori in perturbed Hamiltonian systems, dictated by the Poincare--Birkhoff theorem, are shown to exist. They are embedded in the interactions involving states which differ in a number of quanta equal to the order of the classical resonance. Moreover, the associated classical phase space structures are mimicked in the quasiprobability density functions and their zeros.
In this paper we study a systematic and natural construction of canonical coordinates for the reduced space of a cotangent bundle with a free Lie group action. The canonical coordinates enable us to compute Poincar{e}-Birkhoff normal forms of relative equilibria using standard algorithms. The case of simple mechanical systems with symmetries is studied in detail. As examples we compute Poincar{e}-Birkhoff normal forms for a Lagrangian equilateral triangle configuration of a three-body system with a Morse-type potential and the stretched-out configuration of a double spherical pendulum.