Do you want to publish a course? Click here

Witt groups of spinor varieties

69   0   0.0 ( 0 )
 Added by Heng Xie
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We compute Witt groups of maximal isotropic Grassmannians, aka. spinor varieties. They are examples of type D homogenuous varieties. Our method relies on the Blow-up setup of Balmer-Calm`es, and we investigate the connecting homomorphism via the projective bundle formula of Walter-Nenashev, the projection formula of Calm`es-Hornbostel and the excess intersection formula of Fasel. The computation in the Type D case can be presented by so called even shifted young diagrams.

rate research

Read More

85 - Jean Fasel 2019
In these lectures, we provide a toolkit to work with Chow-Witt groups, and more generally with the homology and cohomology of the Rost-Schmid complex associated to Milnor-Witt $K$-theory.
We study the algebraic $K$-theory and Grothendieck-Witt theory of proto-exact categories of vector bundles over monoid schemes. Our main results are the complete description of the algebraic $K$-theory space of an integral monoid scheme $X$ in terms of its Picard group $operatorname{Pic}(X)$ and pointed monoid of regular functions $Gamma(X, mathcal{O}_X)$ and a description of the Grothendieck-Witt space of $X$ in terms of an additional involution on $operatorname{Pic}(X)$. We also prove space-level projective bundle formulae in both settings.
Let $R$ be the homogeneous coordinate ring of a smooth projective variety $X$ over a field $k$ of characteristic~0. We calculate the $K$-theory of $R$ in terms of the geometry of the projective embedding of $X$. In particular, if $X$ is a curve then we calculate $K_0(R)$ and $K_1(R)$, and prove that $K_{-1}(R)=oplus H^1(C,cO(n))$. The formula for $K_0(R)$ involves the Zariski cohomology of twisted Kahler differentials on the variety.
We show that if X is a toric scheme over a regular ring containing a field then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze.
We introduce a new perspective on the $K$-theory of exact categories via the notion of a CGW-category. CGW-categories are a generalization of exact categories that admit a Qullen $Q$-construction, but which also include examples such as finite sets and varieties. By analyzing Quillens proofs of devissage and localization we define ACGW-categories, an analogous generalization of abelian categories for which we prove theorems analogous to devissage and localization. In particular, although the category of varieties is not quite ACGW, the category of reduced schemes of finite type is; applying devissage and localization allows us to calculate a filtration on the $K$-theory of schemes of finite type. As an application of this theory we construct a comparison map showing that the two authors definitions of the Grothendieck spectrum of varieties are equivalent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا