No Arabic abstract
Let $2<n<mleq omega$. Let $CA_n$ denote the class of cylindric algebras of dimension $n$ and $RCA_n$ denote the class of representable $CA_n$s. We say that $Ain RCA_n$ is representable up to $m$ if $CmAtA$ has an $m$-square representation. An $m$ square represenation is locally relativized represenation that is classical locally only on so called $m$-squares. Roughly if we zoom in by a movable window to an $m$ square representation, there will become a point determinded and depending on $m$ where we mistake the $m$ square-representation for a genuine classical one. When we zoom out the non-representable part gets more exposed. For $2<n<m<lleq omega$, an $l$ square represenation is $m$-square; the converse however is not true. The variety $RCA_n$ is a limiting case coinciding with $CA_n$s having $omega$-square representations. Let $RCA_n^m$ be the class of algebras representable up to $m$. We show that $RCA_n^{m+1}subsetneq bold RCA_n^m$ for $mgeq n+2$.
In cite{CGH15} we introduced TiRS graphs and TiRS frames to create a new natural setting for duals of canonical extensions of lattices. In this continuation of cite{CGH15} we answer Problem 2 from there by characterising the perfect lattices that are dual to TiRS frames (and hence TiRS graphs). We introduce a new subclass of perfect lattices called PTi lattices and show that the canonical extensions of lattices are PTi lattices, and so are `more than just perfect lattices. We introduce morphisms of TiRS structures and put our correspondence between TiRS graphs and TiRS frames from cite{CGH15} into a full categorical framework. We illustrate our correspondences between classes of perfects lattices and classes of TiRS graphs by examples.
For any pair of ordinals $alpha<beta$, $sf CA_alpha$ denotes the class of cylindric algebras of dimension $alpha$, $sf RCA_{alpha}$ denote the class of representable $sf CA_alpha$s and $sf Nr_alpha CA_beta$ ($sf Ra CA_beta)$ denotes the class of $alpha$-neat reducts (relation algebra reducts) of $sf CA_beta$. We show that any class $sf K$ such that $sf RaCA_omega subseteq sf Ksubseteq RaCA_5$, $sf K$ is not elementary, i.e not definable in first order logic. Let $2<n<omega$. It is also shown that any class $sf K$ such that $sf Nr_nCA_omega cap {sf CRCA}_nsubseteq {sf K}subseteq mathbf{S}_csf Nr_nCA_{n+3}$, where $sf CRCA_n$ is the class of completely representable $sf CA_n$s, and $mathbf{S}_c$ denotes the operation of forming complete subalgebras, is proved not to be elementary. Finally, we show that any class $sf K$ such that $mathbf{S}_dsf Ra CA_omega subseteq {sf K}subseteq mathbf{S}_csf RaCA_5$ is not elementary. It remains to be seen whether there exist elementary classes between $sf RaCA_omega$ and $mathbf{S}_dsf RCA_{omega}$. In particular, for $mgeq n+3$, the classes $sf Nr_nCA_m$, $sf CRCA_n$, $mathbf{S}_dsf Nr_nCA_m$, where $mathbf{S}_d$ is the operation of forming dense subalgebras are not first order definable.
In this paper, we give new proofs of the celebrated Andreka-Resek-Thompson representability results of certain axiomatized cylindric-like algebras. Such representability results provide completeness theorems for variants of first order logic, that can also be viewed as multi-modal logics. The proofs herein are combinatorial and we also use some techniques from game theory.
Let $alpha$ be an arbritary ordinal, and $2<n<omega$. In cite{3} accepted for publication in Quaestiones Mathematicae, we studied using algebraic logic, interpolation, amalgamation using $alpha$ many variables for topological logic with $alpha$ many variables briefly $sf TopL_{alpha}$. This is a sequel to cite{3}; the second part on modal cylindric algebras, where we study algebraically other properties of $sf TopL_{alpha}$. Modal cylindric algebras are cylindric algebras of infinite dimension expanded with unary modalities inheriting their semantics from a unimodal logic $sf L$ such as $sf K5$ or $sf S4$. Using the methodology of algebraic logic, we study topological (when $sf L=S4$), in symbols $sf TCA_{alpha}$. We study completeness and omitting types $sf OTT$s for $sf TopL_{omega}$ and $sf TenL_{omega}$, by proving several representability results for locally finite such algebras. Furthermore, we study the notion of atom-canonicity for both ${sf TCA}_{n}$ and ${sf TenL}_n$, a well known persistence property in modal logic, in connection to $sf OTT$ for ${sf TopL}_n$ and ${sf TeLCA}_n$, respectively. We study representability, omitting types, interpolation and complexity isssues (such as undecidability) for topological cylindric algebras. In a sequel to this paper, we introduce temporal cyindric algebras and point out the way how to amalgamate algebras of space (topological algebars) and algebras of time (temporal algebras) forming topological-temporal cylindric algebras that lend themselves to encompassing spacetime gemetries, in a purely algebraic manner.
For an ordinal $alpha$, $sf PEA_{alpha}$ denotes the class of polyadic equality algebras of dimension $alpha$. We show that for several classes of algebras that are reducts of $PEA_{omega}$ whose signature contains all substitutions and finite cylindrifiers, if $B$ is in such a class, and $B$ is atomic, then for all $n<omega$, $Nr_nB$ is completely representable as a $PEA_n$. Conversely, we show that for any $2<n<omega$, and any variety $sf V$, between diagonal free cylindric algebras and quasipolyadic equality algebras of dimension $n$, the class of completely representable algebras in $sf V$ is not elementary.