No Arabic abstract
For an ordinal $alpha$, $sf PEA_{alpha}$ denotes the class of polyadic equality algebras of dimension $alpha$. We show that for several classes of algebras that are reducts of $PEA_{omega}$ whose signature contains all substitutions and finite cylindrifiers, if $B$ is in such a class, and $B$ is atomic, then for all $n<omega$, $Nr_nB$ is completely representable as a $PEA_n$. Conversely, we show that for any $2<n<omega$, and any variety $sf V$, between diagonal free cylindric algebras and quasipolyadic equality algebras of dimension $n$, the class of completely representable algebras in $sf V$ is not elementary.
Let $2<n<mleq omega$. Let $CA_n$ denote the class of cylindric algebras of dimension $n$ and $RCA_n$ denote the class of representable $CA_n$s. We say that $Ain RCA_n$ is representable up to $m$ if $CmAtA$ has an $m$-square representation. An $m$ square represenation is locally relativized represenation that is classical locally only on so called $m$-squares. Roughly if we zoom in by a movable window to an $m$ square representation, there will become a point determinded and depending on $m$ where we mistake the $m$ square-representation for a genuine classical one. When we zoom out the non-representable part gets more exposed. For $2<n<m<lleq omega$, an $l$ square represenation is $m$-square; the converse however is not true. The variety $RCA_n$ is a limiting case coinciding with $CA_n$s having $omega$-square representations. Let $RCA_n^m$ be the class of algebras representable up to $m$. We show that $RCA_n^{m+1}subsetneq bold RCA_n^m$ for $mgeq n+2$.
We take a long magical tour in algebraic logic, starting from classical results on neat embeddings due to Henkin, Monk and Tarski, all the way to recent results in algebraic logic using so--called rainbow constructions invented by Hirsch and Hodkinson. Highlighting the connections with graph theory, model theory, and finite combinatorics, this article aspires to present topics of broad interest in a way that is hopefully accessible to a large audience. The paper has a survey character but it contains new approaches to old ones. We aspire to make our survey fairly comprehensive, at least in so far as Tarskian algebraic logic, specifically, the theory of cylindric algebras, is concerned. Other topics, such as abstract algebraic logic, modal logic and the so--called (central) finitizability problem in algebraic logic will be dealt with; the last in some detail. Rainbow constructions are used to solve problems adressing classes of cylindric--like algebras consisting of algebras having a neat embedding property. The hitherto obtained results generalize seminal results of Hirsch and Hodkinson on non--atom canonicity, non--first order definabiity and non--finite axiomatizability, proved for classes of representable cylindric algebras of finite dimension$>2$. We show that such results remain valid for cylindric algebras possesing relativized {it clique guarded} representations that are {it only locally} well behaved. The paper is written in a way that makes it accessible to non--specialists curious about the state of the art in Tarskian algebraic logic. Reaching the boundaries of current research, the paper also aspires to be informative to the practitioner, and even more, stimulates her/him to carry on further research in main stream algebraic logic.
We prove that rationally essential manifolds with suitably large fundamental groups do not admit any maps of non-zero degree from products of closed manifolds of positive dimension. Particular examples include all manifolds of non-positive sectional curvature of rank one and all irreducible locally symmetric spaces of non-compact type. For closed manifolds from certain classes, say non-positively curved ones, or certain surface bundles over surfaces, we show that they do admit maps of non-zero degree from non-trivial products if and only if they are virtually diffeomorphic to products.
Let $R$ be a commutative ring. We investigate $R$-modules which can be written as emph{finite} sums of {it {second}} $R$-submodules (we call them emph{second representable}). We provide sufficient conditions for an $R$-module $M$ to be have a (minimal) second presentation, in particular within the class of lifting modules. Moreover, we investigate the class of (emph{main}) emph{second attached prime ideals} related to a module with such a presentation.
Comets are primitive objects that formed in the protoplanetary disk, and have been largely preserved over the history of the Solar System. However, they are not pristine, and surfaces of cometary nuclei do evolve. In order to understand the extent of their primitive nature, we must define the mechanisms that affect their surfaces and comae. We examine the lightcurve of comet 240P/NEAT over three consecutive orbits, and investigate three events of significant brightening ($Delta m sim -2$ mag). Unlike typical cometary outbursts, each of the three events are long-lived, with enhanced activity for at least 3 to 6 months. The third event, observed by the Zwicky Transient Facility, occurred in at least two stages. The anomalous behavior appears to have started after the comet was perturbed by Jupiter in 2007, reducing its perihelion distance from 2.53 to 2.12 au. We suggest that the brightening events are temporary transitions to a higher baseline activity level, brought on by the increased insolation, which has warmed previously insulated sub-surface layers. The new activity is isolated to one or two locations on the nucleus, indicating that the surface or immediate sub-surface is heterogeneous. Further study of this phenomenon may provide insight into cometary outbursts, the structure of the near-surface nucleus, and cometary nucleus mantling.