Do you want to publish a course? Click here

Non elementary classes of relation and cylindric algebras

84   0   0.0 ( 0 )
 Added by Tarek Sayed Ahmed
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

For any pair of ordinals $alpha<beta$, $sf CA_alpha$ denotes the class of cylindric algebras of dimension $alpha$, $sf RCA_{alpha}$ denote the class of representable $sf CA_alpha$s and $sf Nr_alpha CA_beta$ ($sf Ra CA_beta)$ denotes the class of $alpha$-neat reducts (relation algebra reducts) of $sf CA_beta$. We show that any class $sf K$ such that $sf RaCA_omega subseteq sf Ksubseteq RaCA_5$, $sf K$ is not elementary, i.e not definable in first order logic. Let $2<n<omega$. It is also shown that any class $sf K$ such that $sf Nr_nCA_omega cap {sf CRCA}_nsubseteq {sf K}subseteq mathbf{S}_csf Nr_nCA_{n+3}$, where $sf CRCA_n$ is the class of completely representable $sf CA_n$s, and $mathbf{S}_c$ denotes the operation of forming complete subalgebras, is proved not to be elementary. Finally, we show that any class $sf K$ such that $mathbf{S}_dsf Ra CA_omega subseteq {sf K}subseteq mathbf{S}_csf RaCA_5$ is not elementary. It remains to be seen whether there exist elementary classes between $sf RaCA_omega$ and $mathbf{S}_dsf RCA_{omega}$. In particular, for $mgeq n+3$, the classes $sf Nr_nCA_m$, $sf CRCA_n$, $mathbf{S}_dsf Nr_nCA_m$, where $mathbf{S}_d$ is the operation of forming dense subalgebras are not first order definable.



rate research

Read More

134 - Tarek Sayed Ahmed 2020
Let $alpha$ be an arbritary ordinal, and $2<n<omega$. In cite{3} accepted for publication in Quaestiones Mathematicae, we studied using algebraic logic, interpolation, amalgamation using $alpha$ many variables for topological logic with $alpha$ many variables briefly $sf TopL_{alpha}$. This is a sequel to cite{3}; the second part on modal cylindric algebras, where we study algebraically other properties of $sf TopL_{alpha}$. Modal cylindric algebras are cylindric algebras of infinite dimension expanded with unary modalities inheriting their semantics from a unimodal logic $sf L$ such as $sf K5$ or $sf S4$. Using the methodology of algebraic logic, we study topological (when $sf L=S4$), in symbols $sf TCA_{alpha}$. We study completeness and omitting types $sf OTT$s for $sf TopL_{omega}$ and $sf TenL_{omega}$, by proving several representability results for locally finite such algebras. Furthermore, we study the notion of atom-canonicity for both ${sf TCA}_{n}$ and ${sf TenL}_n$, a well known persistence property in modal logic, in connection to $sf OTT$ for ${sf TopL}_n$ and ${sf TeLCA}_n$, respectively. We study representability, omitting types, interpolation and complexity isssues (such as undecidability) for topological cylindric algebras. In a sequel to this paper, we introduce temporal cyindric algebras and point out the way how to amalgamate algebras of space (topological algebars) and algebras of time (temporal algebras) forming topological-temporal cylindric algebras that lend themselves to encompassing spacetime gemetries, in a purely algebraic manner.
In this paper, we give new proofs of the celebrated Andreka-Resek-Thompson representability results of certain axiomatized cylindric-like algebras. Such representability results provide completeness theorems for variants of first order logic, that can also be viewed as multi-modal logics. The proofs herein are combinatorial and we also use some techniques from game theory.
We study the saturation properties of several classes of $C^*$-algebras. Saturation has been shown by Farah and Hart to unify the proofs of several properties of coronas of $sigma$-unital $C^*$-algebras; we extend their results by showing that some coronas of non-$sigma$-unital $C^*$-algebras are countably degree-$1$ saturated. We then relate saturation of the abelian $C^*$-algebra $C(X)$, where $X$ is $0$-dimensional, to topological properties of $X$, particularly the saturation of $CL(X)$.
117 - Tarek Sayed Ahmed 2020
Let $2<n<mleq omega$. Let $CA_n$ denote the class of cylindric algebras of dimension $n$ and $RCA_n$ denote the class of representable $CA_n$s. We say that $Ain RCA_n$ is representable up to $m$ if $CmAtA$ has an $m$-square representation. An $m$ square represenation is locally relativized represenation that is classical locally only on so called $m$-squares. Roughly if we zoom in by a movable window to an $m$ square representation, there will become a point determinded and depending on $m$ where we mistake the $m$ square-representation for a genuine classical one. When we zoom out the non-representable part gets more exposed. For $2<n<m<lleq omega$, an $l$ square represenation is $m$-square; the converse however is not true. The variety $RCA_n$ is a limiting case coinciding with $CA_n$s having $omega$-square representations. Let $RCA_n^m$ be the class of algebras representable up to $m$. We show that $RCA_n^{m+1}subsetneq bold RCA_n^m$ for $mgeq n+2$.
When classes of structures are not first-order definable, we might still try to find a nice description. There are two common ways for doing this. One is to expand the language, leading to notions of pseudo-elementary classes, and the other is to allow infinite conjuncts and disjuncts. In this paper we examine the intersection. Namely, we address the question: Which classes of structures are both pseudo-elementary and $mathcal{L}_{omega_1 omega}$-elementary? We find that these are exactly the classes that can be defined by an infinitary formula that has no infinitary disjunctions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا