Do you want to publish a course? Click here

A Generalization of Kings Equation via Noncommutative Geometry

77   0   0.0 ( 0 )
 Added by Maxim Kontsevich
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a framework in noncommutative geometry consisting of a $*$-algebra $mathcal A$, a bimodule $Omega^1$ endowed with a derivation $mathcal Ato Omega^1$ and with a Hermitian structure $Omega^1otimes bar{Omega}^1to mathcal A$ (a noncommutative Kahler form), and a cyclic 1-cochain $mathcal Ato mathbb C$ whose coboundary is determined by the previous structures. These data give moment map equations on the space of connections on an arbitrary finitely-generated projective $mathcal A$-module. As particular cases, we obtain a large class of equations in algebra (Kings equations for representations of quivers, including ADHM equations), in classical gauge theory (Hermitian Yang-Mills equations, Hitchin equations, Bogomolny and Nahm equations, etc.), as well as in noncommutative gauge theory by Connes, Douglas and Schwarz. We also discuss Nekrasovs beautiful proposal for re-interpreting noncommutative instantons on $mathbb{C}^nsimeq mathbb{R}^{2n}$ as infinite-dimensional solutions of Kings equation $$sum_{i=1}^n [T_i^dagger, T_i]=hbarcdot ncdotmathrm{Id}_{mathcal H}$$ where $mathcal H$ is a Hilbert space completion of a finitely-generated $mathbb C[T_1,dots,T_n]$-module (e.g. an ideal of finite codimension).



rate research

Read More

We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation and to the gauge structure of the theory. We then argue, following t Hoofts conjecture, that noncommutative spectral geometry classical construction carries implicit in its feature of the doubling of the algebra the seeds of quantization.
We interpret, in the realm of relativistic quantum field theory, the tangential operator given by Coleman, Mandula as an appropriate coordinate operator. The investigation shows that the operator generates a Snyder-like noncommutative spacetime with a minimal length that is given by the mass. By using this operator to define a noncommutative spacetime, we obtain a Poincare invariant noncommutative spacetime and in addition solve the soccer-ball problem. Moreover, from recent progress in deformation theory we extract the idea how to obtain, in a physical and mathematical well-defined manner, an emerging noncommutative spacetime. This is done by a strict deformation quantization known as Rieffel deformation (or warped convolutions). The result is a noncommutative spacetime combining a Snyder and a Moyal-Weyl type of noncommutativity that in addition behaves covariant under transformations of the textbf{whole} Poincare group.
Random noncommutative geometry can be seen as a Euclidean path-integral approach to the quantization of the theory defined by the Spectral Action in noncommutative geometry (NCG). With the aim of investigating phase transitions in random NCG of arbitrary dimension, we study the non-perturbative Functional Renormalization Group for multimatrix models whose action consists of noncommutative polynomials in Hermitian and anti-Hermitian matrices. Such structure is dictated by the Spectral Action for the Dirac operator in Barretts spectral triple formulation of fuzzy spaces.The present mathematically rigorous treatment puts forward coordinate-free language that might be useful also elsewhere, all the more so because our approach holds for general multimatrix models. The toolkit is a noncommutative calculus on the free algebra that allows to describe the generator of the renormalization group flow -- a noncommutative Laplacian introduced here -- in terms of Voiculescus cyclic gradient and Rota-Sagan-Stein noncommutative derivative. We explore the algebraic structure of the Functional Renormalization Group Equation and, as an application of this formalism, we find the $beta$-functions, identify the fixed points in the large-$N$ limit and obtain the critical exponents of $2$-dimensional geometries in two different signatures.
We continue the study of fuzzy geometries inside Connes spectral formalism and their relation to multimatrix models. In this companion paper to [arXiv:2007:10914, Ann. Henri Poincare, 2021] we propose a gauge theory setting based on noncommutative geometry, which -- just as the traditional formulation in terms of almost-commutative manifolds -- has the ability to also accommodate a Higgs field. However, in contrast to `almost-commutative manifolds, the present framework employs only finite dimensional algebras. In a path-integral quantization approach to the Spectral Action, this allows to state Yang-Mills--Higgs theory (on four-dimensional Euclidean fuzzy space) as an explicit random multimatrix model obtained here, whose matrix fields exactly mirror those of the Yang-Mills--Higgs theory on a smooth manifold.
We develop the differential aspects of a noncommutative geometry for the Quantum Hall Effect in the continuous, with the ambition of proving Kubos formula. Taking inspiration from the ideas developed by Bellissard during the 80s we build a Fredholm module for the $C^*$-algebra of continuous magnetic operators, based on a Dirac operator closely related to the quantum harmonic oscillator. An important piece of Bellissards theory (the so-called second Connes formula) is proved. This work provides the continuation of the recent article [DS].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا