Do you want to publish a course? Click here

The noncommutative geometry of the Landau Hamiltonian: Differential aspects

168   0   0.0 ( 0 )
 Added by Giuseppe De Nittis
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop the differential aspects of a noncommutative geometry for the Quantum Hall Effect in the continuous, with the ambition of proving Kubos formula. Taking inspiration from the ideas developed by Bellissard during the 80s we build a Fredholm module for the $C^*$-algebra of continuous magnetic operators, based on a Dirac operator closely related to the quantum harmonic oscillator. An important piece of Bellissards theory (the so-called second Connes formula) is proved. This work provides the continuation of the recent article [DS].



rate research

Read More

The purpose of this paper is threefold: First of all the topological aspects of the Landau Hamiltonian are reviewed in the light (and with the jargon) of theory of topological insulators. In particular it is shown that the Landau Hamiltonian has a generalized even time-reversal symmetry (TRS). Secondly, a new tool for the computation of the topological numbers associated with each Landau level is introduced. The latter is obtained by combining the Dixmier trace and the (resolvent of the) harmonic oscillator. Finally, these results are extended to models with non-Abelian magnetic fields. Two models are investigated in details: the Jaynes-Cummings model and the Quaternionic model.
We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation and to the gauge structure of the theory. We then argue, following t Hoofts conjecture, that noncommutative spectral geometry classical construction carries implicit in its feature of the doubling of the algebra the seeds of quantization.
We use coarse index methods to prove that the Landau Hamiltonian on the hyperbolic half-plane, and even on much more general imperfect half-spaces, has no spectral gaps. Thus the edge states of hyperbolic quantum Hall Hamiltonians completely fill up the gaps between Landau levels, just like those of the Euclidean counterpart.
We introduce a framework in noncommutative geometry consisting of a $*$-algebra $mathcal A$, a bimodule $Omega^1$ endowed with a derivation $mathcal Ato Omega^1$ and with a Hermitian structure $Omega^1otimes bar{Omega}^1to mathcal A$ (a noncommutative Kahler form), and a cyclic 1-cochain $mathcal Ato mathbb C$ whose coboundary is determined by the previous structures. These data give moment map equations on the space of connections on an arbitrary finitely-generated projective $mathcal A$-module. As particular cases, we obtain a large class of equations in algebra (Kings equations for representations of quivers, including ADHM equations), in classical gauge theory (Hermitian Yang-Mills equations, Hitchin equations, Bogomolny and Nahm equations, etc.), as well as in noncommutative gauge theory by Connes, Douglas and Schwarz. We also discuss Nekrasovs beautiful proposal for re-interpreting noncommutative instantons on $mathbb{C}^nsimeq mathbb{R}^{2n}$ as infinite-dimensional solutions of Kings equation $$sum_{i=1}^n [T_i^dagger, T_i]=hbarcdot ncdotmathrm{Id}_{mathcal H}$$ where $mathcal H$ is a Hilbert space completion of a finitely-generated $mathbb C[T_1,dots,T_n]$-module (e.g. an ideal of finite codimension).
259 - Eugene Kanzieper 2014
The Painleve transcendents discovered at the turn of the XX century by pure mathematical reasoning, have later made their surprising appearance -- much in the way of Wigners miracle of appropriateness -- in various problems of theoretical physics. The notable examples include the two-dimensional Ising model, one-dimensional impenetrable Bose gas, corner and polynuclear growth models, one dimensional directed polymers, string theory, two dimensional quantum gravity, and spectral distributions of random matrices. In the present contribution, ideas of integrability are utilized to advocate emergence of an one-dimensional Toda Lattice and the fifth Painleve transcendent in the paradigmatic problem of conductance fluctuations in quantum chaotic cavities coupled to the external world via ballistic point contacts. Specifically, the cumulants of the Landauer conductance of a cavity with broken time-reversal symmetry are proven to be furnished by the coefficients of a Taylor-expanded Painleve V function. Further, the relevance of the fifth Painleve transcendent for a closely related problem of sample-to-sample fluctuations of the noise power is discussed. Finally, it is demonstrated that inclusion of tunneling effects inherent in realistic point contacts does not destroy the integrability: in this case, conductance fluctuations are shown to be governed by a two-dimensional Toda Lattice.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا