Do you want to publish a course? Click here

On multimatrix models motivated by random noncommutative geometry II: A Yang-Mills-Higgs matrix model

233   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We continue the study of fuzzy geometries inside Connes spectral formalism and their relation to multimatrix models. In this companion paper to [arXiv:2007:10914, Ann. Henri Poincare, 2021] we propose a gauge theory setting based on noncommutative geometry, which -- just as the traditional formulation in terms of almost-commutative manifolds -- has the ability to also accommodate a Higgs field. However, in contrast to `almost-commutative manifolds, the present framework employs only finite dimensional algebras. In a path-integral quantization approach to the Spectral Action, this allows to state Yang-Mills--Higgs theory (on four-dimensional Euclidean fuzzy space) as an explicit random multimatrix model obtained here, whose matrix fields exactly mirror those of the Yang-Mills--Higgs theory on a smooth manifold.



rate research

Read More

Random noncommutative geometry can be seen as a Euclidean path-integral approach to the quantization of the theory defined by the Spectral Action in noncommutative geometry (NCG). With the aim of investigating phase transitions in random NCG of arbitrary dimension, we study the non-perturbative Functional Renormalization Group for multimatrix models whose action consists of noncommutative polynomials in Hermitian and anti-Hermitian matrices. Such structure is dictated by the Spectral Action for the Dirac operator in Barretts spectral triple formulation of fuzzy spaces.The present mathematically rigorous treatment puts forward coordinate-free language that might be useful also elsewhere, all the more so because our approach holds for general multimatrix models. The toolkit is a noncommutative calculus on the free algebra that allows to describe the generator of the renormalization group flow -- a noncommutative Laplacian introduced here -- in terms of Voiculescus cyclic gradient and Rota-Sagan-Stein noncommutative derivative. We explore the algebraic structure of the Functional Renormalization Group Equation and, as an application of this formalism, we find the $beta$-functions, identify the fixed points in the large-$N$ limit and obtain the critical exponents of $2$-dimensional geometries in two different signatures.
A fuzzy geometry is a certain type of spectral triple whose Dirac operator crucially turns out to be a finite matrix. This notion was introduced in [J. Barrett, J. Math. Phys. 56, 082301 (2015)] and accommodates familiar fuzzy spaces like spheres and tori. In the framework of random noncommutative geometry, we use Barretts characterization of Dirac operators of fuzzy geometries in order to systematically compute the spectral action $S(D)= mathrm{Tr} f(D)$ for $2n$-dimensional fuzzy geometries. In contrast to the original Chamseddine-Connes spectral action, we take a polynomial $f$ with $f(x)to infty$ as $ |x|toinfty$ in order to obtain a well-defined path integral that can be stated as a random matrix model with action of the type $S(D)=N cdot mathrm{tr}, F+textstylesum_i mathrm{tr},A_i cdot mathrm{tr} ,B_i $, being $F,A_i $ and $B_i $ noncommutative polynomials in $2^{2n-1}$ complex $Ntimes N$ matrices that parametrize the Dirac operator $D$. For arbitrary signature---thus for any admissible KO-dimension---formulas for 2-dimensional fuzzy geometries are given up to a sextic polynomial, and up to a quartic polynomial for 4-dimensional ones, with focus on the octo-matrix models for Lorentzian and Riemannian signatures. The noncommutative polynomials $F,A_i $ and $B_i$ are obtained via chord diagrams and satisfy: independence of $N$; self-adjointness of the main polynomial $F$ (modulo cyclic reordering of each monomial); also up to cyclicity, either self-adjointness or anti-self-adjointness of $A_i $ and $B_i $ simultaneously, for fixed $i$. Collectively, this favors a free probabilistic perspective for the large-$N$ limit we elaborate on.
311 - H. Aoki , N. Ishibashi , S. Iso 1999
We show that twisted reduced models can be interpreted as noncommutative Yang-Mills theory. Based upon this correspondence, we obtain noncommutative Yang-Mills theory with D-brane backgrounds in IIB matrix model. We propose that IIB matrix model with D-brane backgrounds serve as a concrete definition of noncommutative Yang-Mills. We investigate D-instanton solutions as local excitations on D3-branes. When instantons overlap, their interaction can be well described in gauge theory and AdS/CFT correspondence. We show that IIB matrix model gives us the consistent potential with IIB supergravity when they are well separated.
We study singularity formation in spherically symmetric solutions of the charge-one and charge-two sector of the (2+1)-dimensional S^2 sigma-model and the (4+1)-dimensional Yang-Mills model, near the adiabatic limit. These equations are non-integrable, and so studies are performed numerically on rotationally symmetric solutions using an iterative finite differencing scheme that is numerically stable. We evaluate the accuracy of predictions made with the geodesic approximation. We find that the geodesic approximation is extremely accurate for the charge-two sigma-model and the Yang-Mills model, both of which exhibit fast blowup. The charge-one sigma-model exhibits slow blowup. There the geodesic approximation must be modified by applying an infrared cutoff that depends on initial conditions.
We give rigorous proofs for the existence of infinitely many (non-BPS) bound states for two linear operators associated with the Yang-Mills-Higgs equations at vanishing Higgs self-coupling and for gauge group SU(2): the operator obtained by linearising the Yang-Mills-Higgs equations around a charge one monopole and the Laplace operator on the Atiyah-Hitchin moduli space of centred charge two monopoles. For the linearised system we use the Riesz-Galerkin approximation to compute upper bounds on the lowest 20 eigenvalues. We discuss the similarities in the spectrum of the linearised system and the Laplace operator, and interpret them in the light of electric-magnetic duality conjectures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا