Do you want to publish a course? Click here

Robust Trajectory-Constrained Frequency Control for Microgrids Considering Model Linearization Error

183   0   0.0 ( 0 )
 Added by Yichen Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The capability to switch between grid-connected and islanded modes has promoted adoption of microgrid technology for powering remote locations. Stabilizing frequency during the islanding event, however, is a challenging control task, particularly under high penetration of converter-interfaced sources. In this paper, a numerical optimal control (NOC)-based control synthesis methodology is proposed for preparedness of microgrid islanding that ensure guaranteed performance. The key feature of the proposed paradigm is near real-time centralized scheduling for real-time decentralized executing. For tractable computation, linearized models are used in the problem formulation. To accommodate the linearization errors, interval analysis is employed to compute linearization-induced uncertainty as numerical intervals so that the NOC problem can be formulated into a robust mixed-integer linear program. The proposed control is verified on the full nonlinear model in Simulink. The simulation results shown effectiveness of the proposed control paradigm and the necessity of considering linearization-induced uncertainty.



rate research

Read More

Security is one of the biggest concern in power system operation. Recently, the emerging cyber security threats to operational functions of power systems arouse high public attention, and cybersecurity vulnerability thus become an emerging topic to evaluate compromised operational performance under cyber attack. In this paper, vulnerability of cyber security of load frequency control (LFC) system, which is the key component in energy manage system (EMS), is assessed by exploiting the system response to attacks on LFC variables/parameters. Two types of attacks: 1) injection attack and 2) scale attack are considered for evaluation. Two evaluation criteria reflecting the damage on system stability and power generation are used to quantify system loss under cyber attacks. Through a sensitivity-based method and attack tree models, the vulnerability of different LFC components is ranked. In addition, a post-intrusion cyber attack detection scheme is proposed. Classification-based schemes using typical classification algorithms are studied and compared to identify different attack scenarios.
The highly fluctuated renewable generations and electric vehicles have undergone tremendous growth in recent years. The majority of them are connected to the grid via power electronic devices, resulting in wide variation ranges for several key parameters in the frequency response model (FRM) such as system inertia and load damping factor. In this paper, an automatic generation control (AGC) method considering the uncertainties of these key parameters is proposed. First, the historical power system operation data following large power disturbances are used to identify the FRM key parameters offline. Second, the offline identification results and the normal operation data prior to the occurrence of the disturbance are used to train the online probability estimation model of the FRM key parameters. Third, the online estimation results of the FRM key parameters are used as the input, and the model predictive-based AGC signal optimization method is developed based on distributionally robust optimization (DRO) technology. Case studies conducted on the IEEE 118-Bus System show that the proposed AGC method outperforms the widely utilized PI-based control method in terms of performance and efficiency.
This paper proposes a robust transient stability constrained optimal power flow problem that addresses renewable uncertainties by the coordination of generation re-dispatch and power flow router (PFR) tuning.PFR refers to a general type of network-side controller that enlarges the feasible region of the OPF problem. The coordination between network-side and generator-side control in the proposed model is more general than the traditional methods which focus on generation dispatch only. An offline-online solution framework is developed to solve the problem efficiently. Under this framework the original problem is significantly simplified, so that we only need to solve a low-dimensional deterministic problem at the online stage to achieve real-time implementation with a high robustness level. The proposed method is verified on the modified New England 39-bus system. Numerical results demonstrate that the proposed method is efficient and shows good performance on economy and robustness.
With the large-scale integration of renewable power generation, frequency regulation resources (FRRs) are required to have larger capacities and faster ramp rates, which increases the cost of the frequency regulation ancillary service. Therefore, it is necessary to consider the frequency regulation cost and constraint along with real-time economic dispatch (RTED). In this paper, a data-driven distributionally robust optimization (DRO) method for RTED considering automatic generation control (AGC) is proposed. First, a Copula-based AGC signal model is developed to reflect the correlations among the AGC signal, load power and renewable generation variations. Secondly, samples of the AGC signal are taken from its conditional probability distribution under the forecasted load power and renewable generation variations. Thirdly, a distributionally robust RTED model considering the frequency regulation cost and constraint is built and transformed into a linear programming problem by leveraging the Wasserstein metric-based DRO technique. Simulation results show that the proposed method can reduce the total cost of power generation and frequency regulation.
Accounting for more than 40% of global energy consumption, residential and commercial buildings will be key players in any future green energy systems. To fully exploit their potential while ensuring occupant comfort, a robust control scheme is required to handle various uncertainties, such as external weather and occupant behaviour. However, prominent patterns, especially periodicity, are widely seen in most sources of uncertainty. This paper incorporates this correlated structure into the learning model predictive control framework, in order to learn a global optimal robust control scheme for building operations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا