No Arabic abstract
In conformal field theories (CFTs) of dimension $d>3$, two-dimensional (2d) conformal defects are characterised in part by central charges defined via the defects contribution to the trace anomaly. However, in general for interacting CFTs these central charges are difficult to calculate. For superconformal 2d defects in supersymmetric (SUSY) CFTs (SCFTs), we show how to compute these defect central charges from the SUSY partition function either on $S^d$ with defect along $S^2$, or on $S^1 times S^{d-1}$ with defect along $S^1 times S^1$. In the latter case we propose that defect central charges appear in an overall normalisation factor, as part of the SUSY Casimir energy. For 2d half-BPS defects in 4d ${mathcal N}=2$ SCFTs and in the 6d ${mathcal N}=(2,0)$ SCFT we obtain novel, exact results for defect central charges using existing results for partition functions computed using SUSY localisation, SUSY indices, and correspondences to 2d Liouville, Toda, and $q$-deformed Yang-Mills theories. Some of our results for defect central charges agree with those obtained previously via holography, showing that the latter are not just large-$N$ and/or strong-coupling limits, but are exact. Our methods can be straightforwardly extended to other superconformal defects, of various codimension, as we demonstrate for a 4d defect in the 6d ${mathcal N}=(2,0)$ SCFT.
We present a general method for computing the central charges a and c of N=2 superconformal field theories corresponding to singular points in the moduli space of N=2 gauge theories. Our method relates a and c to the U(1)_R anomalies of the topologically twisted gauge theory. We evaluate these anomalies by studying the holomorphic dependence of the path integral measure on the moduli. We calculate a and c for superconformal points in a variety of gauge theories, including N=4 SU(N), N=2 pure SU(N) Yang-Mills, and USp(2N) with 1 massless antisymmetric and 4 massive fundamental hypermultiplets. In the latter case, we reproduce the conformal and flavor central charges previously calculated using the gravity duals of these gauge theories. For any SCFT in the class under consideration, we derive a previously conjectured expression for 2a-c in terms of the sum of the dimensions of operators parameterizing the Coulomb branch. Finally, we prove that the ratio a/c is bounded above by 5/4 and below by 1/2.
We compute the 3d N = 2 superconformal indices for 3d/1d coupled systems, which arise as the worldvolume theories of intersecting surface defects engineered by Higgsing 5d N = 1 gauge theories. We generalize some known 3d dualities, including non-Abelian 3d mirror symmetry and 3d/3d correspondence, to some of the simple 3d/1d coupled systems. Finally we propose a q-Virasoro construction for the superconformal indices.
Central to the AdS/CFT correspondence is a precise relationship between the curvature of an anti-de Sitter (AdS) spacetime and the central charge of the dual conformal field theory (CFT) on its boundary. Our work shows that such a relationship can also be established for tensor network models of AdS/CFT based on regular bulk geometries, leading to an analytical form of the maximal central charges exhibited by the boundary states. We identify a class of tensors based on Majorana dimer states that saturate these bounds in the large curvature limit, while also realizing perfect and block-perfect holographic quantum error correcting codes. Furthermore, the renormalization group description of the resulting model is shown to be analogous to the strong disorder renormalization group, thus giving the first example of an exact quantum error correcting code that gives rise to a well-understood critical system. These systems exhibit a large range of fractional central charges, tunable by the choice of bulk tiling. Our approach thus provides a precise physical interpretation of tensor network models on regular hyperbolic geometries and establishes quantitative connections to a wide range of existing models.
We study four-dimensional superconformal field theories coupled to three-dimensional superconformal boundary or defect degrees of freedom. Starting with bulk N=2, d=4 theories, we construct abelian models preserving N=2, d=3 supersymmetry and the conformal symmetries under which the boundary/defect is invariant. We write the action, including the bulk terms, in N=2, d=3 superspace. Moreover we derive Callan-Symanzik equations for these models using their superconformal transformation properties and show that the beta functions vanish to all orders in perturbation theory, such that the models remain superconformal upon quantization. Furthermore we study a model with N=4 SU(N) Yang-Mills theory in the bulk coupled to a N=4, d=3 hypermultiplet on a defect. This model was constructed by DeWolfe, Freedman and Ooguri, and conjectured to be conformal based on its relation to an AdS configuration studied by Karch and Randall. We write this model in N=2, d=3 superspace, which has the distinct advantage that non-renormalization theorems become transparent. Using N=4, d=3 supersymmetry, we argue that the model is conformal.
Using the recently developed fractional Virasoro algebra cite{la_nave_fractional_2019}, we construct a class of nonlocal CFTs with OPEs of the form $T_k(z)Phi(w) sim frac{ h_gamma Phi}{(z-w)^{1+gamma}}+frac{partial_w^gamma Phi}{z-w},$ and $T_k(z)T_k(w) sim frac{ c_kZ_gamma}{(z-w)^{3gamma+1}}+frac{(1+gamma ) T_k(w)}{(z-w)^{1+gamma}}+frac{partial^gamma_w T_k}{z-w}$ which naturally results in a central charge, $c_k$, that is state-dependent, with $k$ indexing a particular grading. Our work indicates that only those theories which are nonlocal have state-dependent central charges, regardless of the pseudo-differential operator content of their action. All others, including certain fractional Laplacian theories, can be mapped onto an equivalent local one using a suitable covering/field redefinition. In addition, we discuss various perturbative implications of deformations of fractional CFTs that realize a fractional Virasoro algebra through the lense of a degree/state-dependent refinement of the 2 dimensional C-theorem.