We compute the 3d N = 2 superconformal indices for 3d/1d coupled systems, which arise as the worldvolume theories of intersecting surface defects engineered by Higgsing 5d N = 1 gauge theories. We generalize some known 3d dualities, including non-Abelian 3d mirror symmetry and 3d/3d correspondence, to some of the simple 3d/1d coupled systems. Finally we propose a q-Virasoro construction for the superconformal indices.
We initiate the study of intersecting surface operators/defects in four-dimensional quantum field theories (QFTs). We characterize these defects by coupled 4d/2d/0d theories constructed by coupling the degrees of freedom localized at a point and on intersecting surfaces in spacetime to each other and to the four-dimensional QFT. We construct supersymmetric intersecting surface defects preserving just two supercharges in N = 2 gauge theories. These defects are amenable to exact analysis by localization of the partition function of the underlying 4d/2d/0d QFT. We identify the 4d/2d/0d QFTs that describe intersecting surface operators in N = 2 gauge theories realized by intersecting M2-branes ending on N M5-branes wrapping a Riemann surface. We conjecture and provide evidence for an explicit equivalence between the squashed four-sphere partition function of these intersecting defects and correlation functions in Liouville/Toda CFT with the insertion of arbitrary degenerate vertex operators, which are labeled by representations of SU(N).
We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like configurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. Our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.
An exact formula for partition functions in 3d field theories was recently suggested by Jafferis, and Hama, Hosomichi, and Lee. These functions are expressed in terms of specific $q$-hypergeometric integrals whose key building block is the double sine function (or the hyperbolic gamma function). Elliptic hypergeometric integrals, discovered by the second author, define 4d superconformal indices. Using their reduction to the hyperbolic level, we describe a general scheme of reducing 4d superconformal indices to 3d partition functions which imply an efficient way of getting 3d $mathcal{N}=2$ supersymmetric dualities for both SYM and CS theories from the parent 4d $mathcal{N}=1$ dualities for SYM theories. As an example, we consider explicitly the duality pattern for 3d $mathcal{N}=2$ SYM and CS theories with SP(2N) gauge group with the antisymmetric tensor matter.
We propose a general formula for the perturbative large N superconformal index of 5d quiver fixed point theories that have an AdS(6)xS(4)/Z(n) supergravity dual. This index is obtained from the parent theory by projecting to orbifold-invariant states and adding the twisted sector contributions. Our result agrees with expectations from the dual supergravity description. We test our formula against the direct computation of the index for Z(2) and Z(3) and find complete agreement.
Superconformal indices of 4d N=1 SYM theories with SU(N) and SP(2N) gauge groups are investigated for N_f=N and N_f=N+1 flavors, respectively. These indices vanish for generic values of the flavor fugacities. However, for a singular submanifold of fugacities they behave like the Dirac delta functions and describe the chiral symmetry breaking phenomenon. Similar picture holds for partition functions of 3d supersymmetric field theories with the chiral symmetry breaking.