Do you want to publish a course? Click here

Four-Dimensional Superconformal Theories with Interacting Boundaries or Defects

337   0   0.0 ( 0 )
 Added by Johanna Erdmenger
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

We study four-dimensional superconformal field theories coupled to three-dimensional superconformal boundary or defect degrees of freedom. Starting with bulk N=2, d=4 theories, we construct abelian models preserving N=2, d=3 supersymmetry and the conformal symmetries under which the boundary/defect is invariant. We write the action, including the bulk terms, in N=2, d=3 superspace. Moreover we derive Callan-Symanzik equations for these models using their superconformal transformation properties and show that the beta functions vanish to all orders in perturbation theory, such that the models remain superconformal upon quantization. Furthermore we study a model with N=4 SU(N) Yang-Mills theory in the bulk coupled to a N=4, d=3 hypermultiplet on a defect. This model was constructed by DeWolfe, Freedman and Ooguri, and conjectured to be conformal based on its relation to an AdS configuration studied by Karch and Randall. We write this model in N=2, d=3 superspace, which has the distinct advantage that non-renormalization theorems become transparent. Using N=4, d=3 supersymmetry, we argue that the model is conformal.



rate research

Read More

Turning on N=2 supersymmetry-preserving relevant operators in a 4-dimensional N=2 superconformal field theory (SCFT) corresponds to a complex deformation compatible with the rigid special Kahler geometry encoded in the low energy effective action. Field theoretic consistency arguments indicate that there should be many distinct such relevant deformations of each SCFT fixed point. Some new supersymmetry-preserving complex deformations are constructed of isolated rank 1 SCFTs. We also make predictions for the dimensions of certain Higgs branches for some rank 1 SCFTs.
We present a general method for computing the central charges a and c of N=2 superconformal field theories corresponding to singular points in the moduli space of N=2 gauge theories. Our method relates a and c to the U(1)_R anomalies of the topologically twisted gauge theory. We evaluate these anomalies by studying the holomorphic dependence of the path integral measure on the moduli. We calculate a and c for superconformal points in a variety of gauge theories, including N=4 SU(N), N=2 pure SU(N) Yang-Mills, and USp(2N) with 1 massless antisymmetric and 4 massive fundamental hypermultiplets. In the latter case, we reproduce the conformal and flavor central charges previously calculated using the gravity duals of these gauge theories. For any SCFT in the class under consideration, we derive a previously conjectured expression for 2a-c in terms of the sum of the dimensions of operators parameterizing the Coulomb branch. Finally, we prove that the ratio a/c is bounded above by 5/4 and below by 1/2.
Using the off-shell formulation for ${mathcal N}=2$ conformal supergravity in four dimensions, we propose superconformal higher-spin multiplets of conserved currents and their associated unconstrained gauge prepotentials. The latter are used to construct locally superconformal chiral actions, which are demonstrated to be gauge invariant in arbitrary conformally flat backgrounds.
We study the classification of 2-dimensional scale-invariant rigid special Kahler (RSK) geometries, which potentially describe the Coulomb branches of N=2 supersymmetric field theories in four dimensions. We show that this classification is equivalent to the solution of a set of polynomial equations by using an integrability condition for the central charge, scale invariance, constraints coming from demanding single-valuedness of physical quantities on the Coulomb branch, and properties of massless BPS states at singularities. We find solutions corresponding to lagrangian scale invariant theories--including the scale invariant G_2 theory not found before in the literature--as well as many new isolated solutions (having no marginal deformations). All our scale-invariant RSK geometries are consistent with an interpretation as effective theories of N=2 superconformal field theories, and, where we can check, turn out to exist as quantum field theories.
Boundaries in three-dimensional $mathcal{N}=2$ superconformal theories may preserve one half of the original bulk supersymmetry. There are two possibilities which are characterized by the chirality of the leftover supercharges. Depending on the choice, the remaining $2d$ boundary algebra exhibits $mathcal{N}=(0,2)$ or $mathcal{N}=(1,1)$ supersymmetry. In this work we focus on correlation functions of chiral fields for both types of supersymmetric boundaries. We study a host of correlators using superspace techniques and calculate superconformal blocks for two- and three-point functions. For $mathcal{N}=(1,1)$ supersymmetry, some of our results can be analytically continued in the spacetime dimension while keeping the codimension fixed. This opens the door for a bootstrap analysis of the $epsilon$-expansion in supersymmetric BCFTs. Armed with our analytically-continued superblocks, we prove that in the free theory limit two-point functions of chiral (and antichiral) fields are unique. The first order correction, which already describes interactions, is universal up to two free parameters. As a check of our analysis, we study the Wess-Zumino model with a supersymmetric boundary using Feynman diagrams, and find perfect agreement between the perturbative and bootstrap results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا