No Arabic abstract
Using the recently developed fractional Virasoro algebra cite{la_nave_fractional_2019}, we construct a class of nonlocal CFTs with OPEs of the form $T_k(z)Phi(w) sim frac{ h_gamma Phi}{(z-w)^{1+gamma}}+frac{partial_w^gamma Phi}{z-w},$ and $T_k(z)T_k(w) sim frac{ c_kZ_gamma}{(z-w)^{3gamma+1}}+frac{(1+gamma ) T_k(w)}{(z-w)^{1+gamma}}+frac{partial^gamma_w T_k}{z-w}$ which naturally results in a central charge, $c_k$, that is state-dependent, with $k$ indexing a particular grading. Our work indicates that only those theories which are nonlocal have state-dependent central charges, regardless of the pseudo-differential operator content of their action. All others, including certain fractional Laplacian theories, can be mapped onto an equivalent local one using a suitable covering/field redefinition. In addition, we discuss various perturbative implications of deformations of fractional CFTs that realize a fractional Virasoro algebra through the lense of a degree/state-dependent refinement of the 2 dimensional C-theorem.
Central to the AdS/CFT correspondence is a precise relationship between the curvature of an anti-de Sitter (AdS) spacetime and the central charge of the dual conformal field theory (CFT) on its boundary. Our work shows that such a relationship can also be established for tensor network models of AdS/CFT based on regular bulk geometries, leading to an analytical form of the maximal central charges exhibited by the boundary states. We identify a class of tensors based on Majorana dimer states that saturate these bounds in the large curvature limit, while also realizing perfect and block-perfect holographic quantum error correcting codes. Furthermore, the renormalization group description of the resulting model is shown to be analogous to the strong disorder renormalization group, thus giving the first example of an exact quantum error correcting code that gives rise to a well-understood critical system. These systems exhibit a large range of fractional central charges, tunable by the choice of bulk tiling. Our approach thus provides a precise physical interpretation of tensor network models on regular hyperbolic geometries and establishes quantitative connections to a wide range of existing models.
The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points are close to the real axis, the system typically exhibits walking behavior with Miransky (or Berezinsky-Kosterlitz-Thouless) scaling. We present a novel realization of these phenomena at strong coupling by means of the gauge/gravity duality, and give evidence for the conjectured existence of complex conformal field theories at the fixed points.
It is widely expected that at sufficiently high temperatures order is always lost, e.g. magnets loose their ferromagnetic properties. We pose the question of whether this is always the case in the context of quantum field theory in $d$ space dimensions. More concretely, one can ask whether there exist critical points (CFTs) which break some global symmetry at arbitrary finite temperature. The most familiar CFTs do not exhibit symmetry breaking at finite temperature, and moreover, in the context of the AdS/CFT correspondence, critical points at finite temperature are described by an uncharged black brane which obeys a no-hair theorem. Yet, we show that there exist CFTs which have some of their internal symmetries broken at arbitrary finite temperature. Our main example is a vector model which we study both in the epsilon expansion and arbitrary rank as well as the large rank limit (and arbitrary dimension). The large rank limit of the vector model displays a conformal manifold, a moduli space of vacua, and a deformed moduli space of vacua at finite temperature. The appropriate Nambu-Goldstone bosons including the dilaton-like particle are identified. Using these tools we establish symmetry breaking at finite temperature for finite small $epsilon$. We also prove that a large class of other fixed points, which describe some of the most common quantum magnets, indeed behave as expected and do not break any global symmetry at finite temperature. We discuss some of the consequences of finite temperature symmetry breaking for the spectrum of local operators. Finally, we propose a class of fixed points which appear to be possible candidates for finite temperature symmetry breaking in $d=2$.
We show that a certain class of nonlocal scalar models, with a kinetic operator inspired by string field theory, is equivalent to a system which is local in the coordinates but nonlocal in an auxiliary evolution variable. This system admits both Lagrangian and Hamiltonian formulations, and its Cauchy problem and quantization are well-defined. We classify exact nonperturbative solutions of the localized model which can be found via the diffusion equation governing the fields.
In this work we explore the possibility of spontaneous breaking of global symmetries at all nonzero temperatures for conformal field theories (CFTs) in $D = 4$ space-time dimensions. We show that such a symmetry-breaking indeed occurs in certain families of non-supersymmetric large $N$ gauge theories at a planar limit. We also show that this phenomenon is accompanied by the system remaining in a persistent Brout-Englert-Higgs (BEH) phase at any temperature. These analyses are motivated by the work done in arXiv:2005.03676 where symmetry-breaking was observed in all thermal states for certain CFTs in fractional dimensions. In our case, the theories demonstrating the above features have gauge groups which are specific products of $SO(N)$ in one family and $SU(N)$ in the other. Working in a perturbative regime at the $Nrightarrowinfty$ limit, we show that the beta functions in these theories yield circles of fixed points in the space of couplings. We explicitly check this structure up to two loops and then present a proof of its survival under all loop corrections. We show that under certain conditions, an interval on this circle of fixed points demonstrates both the spontaneous breaking of a global symmetry as well as a persistent BEH phase at all nonzero temperatures. The broken global symmetry is $mathbb{Z}_2$ in one family of theories and $U(1)$ in the other. The corresponding order parameters are expectation values of the determinants of bifundamental scalar fields in these theories. We characterize these symmetries as baryon-like symmetries in the respective models.