Do you want to publish a course? Click here

StructSum: Summarization via Structured Representations

102   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Abstractive text summarization aims at compressing the information of a long source document into a rephrased, condensed summary. Despite advances in modeling techniques, abstractive summarization models still suffer from several key challenges: (i) layout bias: they overfit to the style of training corpora; (ii) limited abstractiveness: they are optimized to copying n-grams from the source rather than generating novel abstractive summaries; (iii) lack of transparency: they are not interpretable. In this work, we propose a framework based on document-level structure induction for summarization to address these challenges. To this end, we propose incorporating latent and explicit dependencies across sentences in the source document into end-to-end single-document summarization models. Our framework complements standard encoder-decoder summarization models by augmenting them with rich structure-aware document representations based on implicitly learned (latent) structures and externally-derived linguistic (explicit) structures. We show that our summarization framework, trained on the CNN/DM dataset, improves the coverage of content in the source documents, generates more abstractive summaries by generating more novel n-grams, and incorporates interpretable sentence-level structures, while performing on par with standard baselines.



rate research

Read More

Abstractive summarization, the task of generating a concise summary of input documents, requires: (1) reasoning over the source document to determine the salient pieces of information scattered across the long document, and (2) composing a cohesive text by reconstructing these salient facts into a shorter summary that faithfully reflects the complex relations connecting these facts. In this paper, we adapt TP-TRANSFORMER (Schlag et al., 2019), an architecture that enriches the original Transformer (Vaswani et al., 2017) with the explicitly compositional Tensor Product Representation (TPR), for the task of abstractive summarization. The key feature of our model is a structural bias that we introduce by encoding two separate representations for each token to represent the syntactic structure (with role vectors) and semantic content (with filler vectors) separately. The model then binds the role and filler vectors into the TPR as the layer output. We argue that the structured intermediate representations enable the model to take better control of the contents (salient facts) and structures (the syntax that connects the facts) when generating the summary. Empirically, we show that our TP-TRANSFORMER outperforms the Transformer and the original TP-TRANSFORMER significantly on several abstractive summarization datasets based on both automatic and human evaluations. On several syntactic and semantic probing tasks, we demonstrate the emergent structural information in the role vectors and improved syntactic interpretability in the TPR layer outputs. Code and models are available at https://github.com/jiangycTarheel/TPT-Summ.
Summarization of long sequences into a concise statement is a core problem in natural language processing, requiring non-trivial understanding of the input. Based on the promising results of graph neural networks on highly structured data, we develop a framework to extend existing sequence encoders with a graph component that can reason about long-distance relationships in weakly structured data such as text. In an extensive evaluation, we show that the resulting hybrid sequence-graph models outperform both pure sequence models as well as pure graph models on a range of summarization tasks.
Developed so far, multi-document summarization has reached its bottleneck due to the lack of sufficient training data and diverse categories of documents. Text classification just makes up for these deficiencies. In this paper, we propose a novel summarization system called TCSum, which leverages plentiful text classification data to improve the performance of multi-document summarization. TCSum projects documents onto distributed representations which act as a bridge between text classification and summarization. It also utilizes the classification results to produce summaries of different styles. Extensive experiments on DUC generic multi-document summarization datasets show that, TCSum can achieve the state-of-the-art performance without using any hand-crafted features and has the capability to catch the variations of summary styles with respect to different text categories.
A commonly observed problem with the state-of-the art abstractive summarization models is that the generated summaries can be factually inconsistent with the input documents. The fact that automatic summarization may produce plausible-sounding yet inaccurate summaries is a major concern that limits its wide application. In this paper we present an approach to address factual consistency in summarization. We first propose an efficient automatic evaluation metric to measure factual consistency; next, we propose a novel learning algorithm that maximizes the proposed metric during model training. Through extensive experiments, we confirm that our method is effective in improving factual consistency and even overall quality of the summaries, as judged by both automatic metrics and human evaluation.
Question Generation (QG) is the task of generating a plausible question for a given <passage, answer> pair. Template-based QG uses linguistically-informed heuristics to transform declarative sentences into interrogatives, whereas supervised QG uses existing Question Answering (QA) datasets to train a system to generate a question given a passage and an answer. A disadvantage of the heuristic approach is that the generated questions are heavily tied to their declarative counterparts. A disadvantage of the supervised approach is that they are heavily tied to the domain/language of the QA dataset used as training data. In order to overcome these shortcomings, we propose an unsupervised QG method which uses questions generated heuristically from summaries as a source of training data for a QG system. We make use of freely available news summary data, transforming declarative summary sentences into appropriate questions using heuristics informed by dependency parsing, named entity recognition and semantic role labeling. The resulting questions are then combined with the original news articles to train an end-to-end neural QG model. We extrinsically evaluate our approach using unsupervised QA: our QG model is used to generate synthetic QA pairs for training a QA model. Experimental results show that, trained with only 20k English Wikipedia-based synthetic QA pairs, the QA model substantially outperforms previous unsupervised models on three in-domain datasets (SQuAD1.1, Natural Questions, TriviaQA) and three out-of-domain datasets (NewsQA, BioASQ, DuoRC), demonstrating the transferability of the approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا