Do you want to publish a course? Click here

Improving Unsupervised Question Answering via Summarization-Informed Question Generation

121   0   0.0 ( 0 )
 Added by Chenyang Lyu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Question Generation (QG) is the task of generating a plausible question for a given <passage, answer> pair. Template-based QG uses linguistically-informed heuristics to transform declarative sentences into interrogatives, whereas supervised QG uses existing Question Answering (QA) datasets to train a system to generate a question given a passage and an answer. A disadvantage of the heuristic approach is that the generated questions are heavily tied to their declarative counterparts. A disadvantage of the supervised approach is that they are heavily tied to the domain/language of the QA dataset used as training data. In order to overcome these shortcomings, we propose an unsupervised QG method which uses questions generated heuristically from summaries as a source of training data for a QG system. We make use of freely available news summary data, transforming declarative summary sentences into appropriate questions using heuristics informed by dependency parsing, named entity recognition and semantic role labeling. The resulting questions are then combined with the original news articles to train an end-to-end neural QG model. We extrinsically evaluate our approach using unsupervised QA: our QG model is used to generate synthetic QA pairs for training a QA model. Experimental results show that, trained with only 20k English Wikipedia-based synthetic QA pairs, the QA model substantially outperforms previous unsupervised models on three in-domain datasets (SQuAD1.1, Natural Questions, TriviaQA) and three out-of-domain datasets (NewsQA, BioASQ, DuoRC), demonstrating the transferability of the approach.



rate research

Read More

A commonly observed problem with the state-of-the art abstractive summarization models is that the generated summaries can be factually inconsistent with the input documents. The fact that automatic summarization may produce plausible-sounding yet inaccurate summaries is a major concern that limits its wide application. In this paper we present an approach to address factual consistency in summarization. We first propose an efficient automatic evaluation metric to measure factual consistency; next, we propose a novel learning algorithm that maximizes the proposed metric during model training. Through extensive experiments, we confirm that our method is effective in improving factual consistency and even overall quality of the summaries, as judged by both automatic metrics and human evaluation.
Although deep neural networks have achieved tremendous success for question answering (QA), they are still suffering from heavy computational and energy cost for real product deployment. Further, existing QA systems are bottlenecked by the encoding time of real-time questions with neural networks, thus suffering from detectable latency in deployment for large-volume traffic. To reduce the computational cost and accelerate real-time question answering (RTQA) for practical usage, we propose to remove all the neural networks from online QA systems, and present Ocean-Q (an Ocean of Questions), which introduces a new question generation (QG) model to generate a large pool of QA pairs offline, then in real time matches an input question with the candidate QA pool to predict the answer without question encoding. Ocean-Q can be readily deployed in existing distributed database systems or search engine for large-scale query usage, and much greener with no additional cost for maintaining large neural networks. Experiments on SQuAD(-open) and HotpotQA benchmarks demonstrate that Ocean-Q is able to accelerate the fastest state-of-the-art RTQA system by 4X times, with only a 3+% accuracy drop.
127 - Jian Wang , Junhao Liu , Wei Bi 2019
Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at https://github.com/siat-nlp/TransDG.
Open-domain Question Answering (ODQA) has achieved significant results in terms of supervised learning manner. However, data annotation cannot also be irresistible for its huge demand in an open domain. Though unsupervised QA or unsupervised Machine Reading Comprehension (MRC) has been tried more or less, unsupervised ODQA has not been touched according to our best knowledge. This paper thus pioneers the work of unsupervised ODQA by formally introducing the task and proposing a series of key data construction methods. Our exploration in this work inspiringly shows unsupervised ODQA can reach up to 86% performance of supervised ones.
103 - Xiaoman Pan , Kai Sun , Dian Yu 2019
We focus on multiple-choice question answering (QA) tasks in subject areas such as science, where we require both broad background knowledge and the facts from the given subject-area reference corpus. In this work, we explore simple yet effective methods for exploiting two sources of external knowledge for subject-area QA. The first enriches the original subject-area reference corpus with relevant text snippets extracted from an open-domain resource (i.e., Wikipedia) that cover potentially ambiguous concepts in the question and answer options. As in other QA research, the second method simply increases the amount of training data by appending additional in-domain subject-area instances. Experiments on three challenging multiple-choice science QA tasks (i.e., ARC-Easy, ARC-Challenge, and OpenBookQA) demonstrate the effectiveness of our methods: in comparison to the previous state-of-the-art, we obtain absolute gains in accuracy of up to 8.1%, 13.0%, and 12.8%, respectively. While we observe consistent gains when we introduce knowledge from Wikipedia, we find that employing additional QA training instances is not uniformly helpful: performance degrades when the added instances exhibit a higher level of difficulty than the original training data. As one of the first studies on exploiting unstructured external knowledge for subject-area QA, we hope our methods, observations, and discussion of the exposed limitations may shed light on further developments in the area.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا