No Arabic abstract
In the multiple testing context, we utilize vine copulae for optimizing the effective number of tests. It is well known that for the calibration of multiple tests (for control of the family-wise error rate) the dependencies between the marginal tests are of utmost importance. It has been shown in previous work, that positive dependencies between the marginal tests can be exploited in order to derive a relaxed Sidak-type multiplicity correction. This correction can conveniently be expressed by calculating the corresponding effective number of tests for a given (global) significance level. This methodology can also be applied to blocks of test statistics so that the effective number of tests can be calculated by the sum of the effective numbers of tests for each block. In the present work, we demonstrate how the power of the multiple test can be optimized by taking blocks with high inner-block dependencies. The determination of those blocks will be performed by means of an estimated vine copula model. An algorithm is presented which uses the information of the estimated vine copula to make a data-driven choice of appropriate blocks in terms of (estimated) dependencies. Numerical experiments demonstrate the usefulness of the proposed approach.
Quantile regression, that is the prediction of conditional quantiles, has steadily gained importance in statistical modeling and financial applications. The authors introduce a new semiparametric quantile regression method based on sequentially fitting a likelihood optimal D-vine copula to given data resulting in highly flexible models with easily extractable conditional quantiles. As a subclass of regular vine copulas, D-vines enable the modeling of multivariate copulas in terms of bivariate building blocks, a so-called pair-copula construction (PCC). The proposed algorithm works fast and accurate even in high dimensions and incorporates an automatic variable selection by maximizing the conditional log-likelihood. Further, typical issues of quantile regression such as quantile crossing or transformations, interactions and collinearity of variables are automatically taken care of. In a simulation study the improved accuracy and saved computational time of the approach in comparison with established quantile regression methods is highlighted. An extensive financial application to international credit default swap (CDS) data including stress testing and Value-at-Risk (VaR) prediction demonstrates the usefulness of the proposed method.
Vine copulas are pair-copula constructions enabling multivariate dependence modeling in terms of bivariate building blocks. One of the main tasks of fitting a vine copula is the selection of a suitable tree structure. For this the prevalent method is a heuristic called Di{ss}manns algorithm. It sequentially constructs the vines trees by maximizing dependence at each tree level, where dependence is measured in terms of absolute Kendalls $tau$. However, the algorithm disregards any implications of the tree structure on the simplifying assumption that is usually made for vine copulas to keep inference tractable. We develop two new algorithms that select tree structures focused on producing simplified vine copulas for which the simplifying assumption is violated as little as possible. For this we make use of a recently developed statistical test of the simplifying assumption. In a simulation study we show that our proposed methods outperform the benchmark given by Di{ss}manns algorithm by a great margin. Several real data applications emphasize their practical relevance.
A new bivariate copula is proposed for modeling negative dependence between two random variables. We show that it complies with most of the popular notions of negative dependence reported in the literature and study some of its basic properties. Specifically, the Spearmans rho and the Kendalls tau for the proposed copula have a simple one-parameter form with negative values in the full range. Some important ordering properties comparing the strength of negative dependence with respect to the parameter involved are considered. Simple examples of the corresponding bivariate distributions with popular marginals are presented. Application of the proposed copula is illustrated using a real data set.
Quantile regression, the prediction of conditional quantiles, finds applications in various fields. Often, some or all of the variables are discrete. The authors propose two new quantile regression approaches to handle such mixed discrete-continuous data. Both of them generalize the continuous D-vine quantile regression, where the dependence between the response and the covariates is modeled by a parametric D-vine. D-vine quantile regression provides very flexible models, that enable accurate and fast predictions. Moreover, it automatically takes care of major issues of classical quantile regression, such as quantile crossing and interactions between the covariates. The first approach keeps the parametric estimation of the D-vines, but modifies the formulas to account for the discreteness. The second approach estimates the D-vine using continuous convolution to make the discrete variables continuous and then estimates the D-vine nonparametrically. A simulation study is presented examining for which scenarios the discrete-continuous D-vine quantile regression can provide superior prediction abilities. Lastly, the functionality of the two introduced methods is demonstrated by a real-world example predicting the number of bike rentals.
Normal copula with a correlation coefficient between $-1$ and $1$ is tail independent and so it severely underestimates extreme probabilities. By letting the correlation coefficient in a normal copula depend on the sample size, Husler and Reiss (1989) showed that the tail can become asymptotically dependent. In this paper, we extend this result by deriving the limit of the normalized maximum of $n$ independent observations, where the $i$-th observation follows from a normal copula with its correlation coefficient being either a parametric or a nonparametric function of $i/n$. Furthermore, both parametric and nonparametric inference for this unknown function are studied, which can be employed to test the condition in Husler and Reiss (1989). A simulation study and real data analysis are presented too.