Do you want to publish a course? Click here

On a Bivariate Copula for Modeling Negative Dependence

99   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A new bivariate copula is proposed for modeling negative dependence between two random variables. We show that it complies with most of the popular notions of negative dependence reported in the literature and study some of its basic properties. Specifically, the Spearmans rho and the Kendalls tau for the proposed copula have a simple one-parameter form with negative values in the full range. Some important ordering properties comparing the strength of negative dependence with respect to the parameter involved are considered. Simple examples of the corresponding bivariate distributions with popular marginals are presented. Application of the proposed copula is illustrated using a real data set.



rate research

Read More

Normal copula with a correlation coefficient between $-1$ and $1$ is tail independent and so it severely underestimates extreme probabilities. By letting the correlation coefficient in a normal copula depend on the sample size, Husler and Reiss (1989) showed that the tail can become asymptotically dependent. In this paper, we extend this result by deriving the limit of the normalized maximum of $n$ independent observations, where the $i$-th observation follows from a normal copula with its correlation coefficient being either a parametric or a nonparametric function of $i/n$. Furthermore, both parametric and nonparametric inference for this unknown function are studied, which can be employed to test the condition in Husler and Reiss (1989). A simulation study and real data analysis are presented too.
Univariate Weibull distribution is a well-known lifetime distribution and has been widely used in reliability and survival analysis. In this paper, we introduce a new family of bivariate generalized Weibull (BGW) distributions, whose univariate marginals are exponentiated Weibull distribution. Different statistical quantiles like marginals, conditional distribution, conditional expectation, product moments, correlation and a measure component reliability are derived. Various measures of dependence and statistical properties along with ageing properties are examined. Further, the copula associated with BGW distribution and its various important properties are also considered. The methods of maximum likelihood and Bayesian estimation are employed to estimate unknown parameters of the model. A Monte Carlo simulation and real data study are carried out to demonstrate the performance of the estimators and results have proven the effectiveness of the distribution in real-life situations
Bayesian methods - either based on Bayes Factors or BIC - are now widely used for model selection. One property that might reasonably be demanded of any model selection method is that if a model ${M}_{1}$ is preferred to a model ${M}_{0}$, when these two models are expressed as members of one model class $mathbb{M}$, this preference is preserved when they are embedded in a different class $mathbb{M}$. However, we illustrate in this paper that with the usual implementation of these common Bayesian procedures this property does not hold true even approximately. We therefore contend that to use these methods it is first necessary for there to exist a natural embedding class. We argue that in any context like the one illustrated in our running example of Bayesian model selection of binary phylogenetic trees there is no such embedding.
367 - James Allen Fill 2019
We establish a fundamental property of bivariate Pareto records for independent observations uniformly distributed in the unit square. We prove that the asymptotic conditional distribution of the number of records broken by an observation given that the observation sets a record is Geometric with parameter 1/2.
In this paper, we present a new Marshall-Olkin exponential shock model. The new construction method gives the proposed model further ability to allocate the common joint shock on each of the components, making it suitable for application in fields like reliability and credit risk. The given model has a singular part and supports both positive and negative dependence structure. Main dependence properties of the model is given and an analysis of stress-strength is presented. After a performance analysis on the estimator of parameters, a real data is studied. Finally, we give the multivariate version of the proposed model and its main properties.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا