Do you want to publish a course? Click here

D-vine copula based quantile regression

102   0   0.0 ( 0 )
 Added by Daniel Kraus
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Quantile regression, that is the prediction of conditional quantiles, has steadily gained importance in statistical modeling and financial applications. The authors introduce a new semiparametric quantile regression method based on sequentially fitting a likelihood optimal D-vine copula to given data resulting in highly flexible models with easily extractable conditional quantiles. As a subclass of regular vine copulas, D-vines enable the modeling of multivariate copulas in terms of bivariate building blocks, a so-called pair-copula construction (PCC). The proposed algorithm works fast and accurate even in high dimensions and incorporates an automatic variable selection by maximizing the conditional log-likelihood. Further, typical issues of quantile regression such as quantile crossing or transformations, interactions and collinearity of variables are automatically taken care of. In a simulation study the improved accuracy and saved computational time of the approach in comparison with established quantile regression methods is highlighted. An extensive financial application to international credit default swap (CDS) data including stress testing and Value-at-Risk (VaR) prediction demonstrates the usefulness of the proposed method.



rate research

Read More

Quantile regression, the prediction of conditional quantiles, finds applications in various fields. Often, some or all of the variables are discrete. The authors propose two new quantile regression approaches to handle such mixed discrete-continuous data. Both of them generalize the continuous D-vine quantile regression, where the dependence between the response and the covariates is modeled by a parametric D-vine. D-vine quantile regression provides very flexible models, that enable accurate and fast predictions. Moreover, it automatically takes care of major issues of classical quantile regression, such as quantile crossing and interactions between the covariates. The first approach keeps the parametric estimation of the D-vines, but modifies the formulas to account for the discreteness. The second approach estimates the D-vine using continuous convolution to make the discrete variables continuous and then estimates the D-vine nonparametrically. A simulation study is presented examining for which scenarios the discrete-continuous D-vine quantile regression can provide superior prediction abilities. Lastly, the functionality of the two introduced methods is demonstrated by a real-world example predicting the number of bike rentals.
Measuring interdependence between probabilities of default (PDs) in different industry sectors of an economy plays a crucial role in financial stress testing. Thereby, regression approaches may be employed to model the impact of stressed industry sectors as covariates on other response sectors. We identify vine copula based quantile regression as an eligible tool for conducting such stress tests as this method has good robustness properties, takes into account potential nonlinearities of conditional quantile functions and ensures that no quantile crossing effects occur. We illustrate its performance by a data set of sector specific PDs for the German economy. Empirical results are provided for a rough and a fine-grained industry sector classification scheme. Amongst others, we confirm that a stressed automobile industry has a severe impact on the German economy as a whole at different quantile levels whereas e.g., for a stressed financial sector the impact is rather moderate. Moreover, the vine copula based quantile regression approach is benchmarked against both classical linear quantile regression and expectile regression in order to illustrate its methodological effectiveness in the scenarios evaluated.
In the multiple testing context, we utilize vine copulae for optimizing the effective number of tests. It is well known that for the calibration of multiple tests (for control of the family-wise error rate) the dependencies between the marginal tests are of utmost importance. It has been shown in previous work, that positive dependencies between the marginal tests can be exploited in order to derive a relaxed Sidak-type multiplicity correction. This correction can conveniently be expressed by calculating the corresponding effective number of tests for a given (global) significance level. This methodology can also be applied to blocks of test statistics so that the effective number of tests can be calculated by the sum of the effective numbers of tests for each block. In the present work, we demonstrate how the power of the multiple test can be optimized by taking blocks with high inner-block dependencies. The determination of those blocks will be performed by means of an estimated vine copula model. An algorithm is presented which uses the information of the estimated vine copula to make a data-driven choice of appropriate blocks in terms of (estimated) dependencies. Numerical experiments demonstrate the usefulness of the proposed approach.
Vine copulas are pair-copula constructions enabling multivariate dependence modeling in terms of bivariate building blocks. One of the main tasks of fitting a vine copula is the selection of a suitable tree structure. For this the prevalent method is a heuristic called Di{ss}manns algorithm. It sequentially constructs the vines trees by maximizing dependence at each tree level, where dependence is measured in terms of absolute Kendalls $tau$. However, the algorithm disregards any implications of the tree structure on the simplifying assumption that is usually made for vine copulas to keep inference tractable. We develop two new algorithms that select tree structures focused on producing simplified vine copulas for which the simplifying assumption is violated as little as possible. For this we make use of a recently developed statistical test of the simplifying assumption. In a simulation study we show that our proposed methods outperform the benchmark given by Di{ss}manns algorithm by a great margin. Several real data applications emphasize their practical relevance.
In this paper, we develop a quantile functional regression modeling framework that models the distribution of a set of common repeated observations from a subject through the quantile function, which is regressed on a set of covariates to determine how these factors affect various aspects of the underlying subject-specific distribution. To account for smoothness in the quantile functions, we introduce custom basis functions we call textit{quantlets} that are sparse, regularized, near-lossless, and empirically defined, adapting to the features of a given data set and containing a Gaussian subspace so {non-Gaussianness} can be assessed. While these quantlets could be used within various functional regression frameworks, we build a Bayesian framework that uses nonlinear shrinkage of quantlet coefficients to regularize the functional regression coefficients and allows fully Bayesian inferences after fitting a Markov chain Monte Carlo. Specifically, we apply global tests to assess which covariates have any effect on the distribution at all, followed by local tests to identify at which specific quantiles the differences lie while adjusting for multiple testing, and to assess whether the covariate affects certain major aspects of the distribution, including location, scale, skewness, Gaussianness, or tails. If the difference lies in these commonly-used summaries, our approach can still detect them, but our systematic modeling strategy can also detect effects on other aspects of the distribution that might be missed if one restricted attention to pre-chosen summaries. We demonstrate the benefit of the basis space modeling through simulation studies, and illustrate the method using a biomedical imaging data set in which we relate the distribution of pixel intensities from a tumor image to various demographic, clinical, and genetic characteristics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا