Do you want to publish a course? Click here

Robust Stochastic Bandit Algorithms under Probabilistic Unbounded Adversarial Attack

149   0   0.0 ( 0 )
 Added by Ziwei Guan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The multi-armed bandit formalism has been extensively studied under various attack models, in which an adversary can modify the reward revealed to the player. Previous studies focused on scenarios where the attack value either is bounded at each round or has a vanishing probability of occurrence. These models do not capture powerful adversaries that can catastrophically perturb the revealed reward. This paper investigates the attack model where an adversary attacks with a certain probability at each round, and its attack value can be arbitrary and unbounded if it attacks. Furthermore, the attack value does not necessarily follow a statistical distribution. We propose a novel sample median-based and exploration-aided UCB algorithm (called med-E-UCB) and a median-based $epsilon$-greedy algorithm (called med-$epsilon$-greedy). Both of these algorithms are provably robust to the aforementioned attack model. More specifically we show that both algorithms achieve $mathcal{O}(log T)$ pseudo-regret (i.e., the optimal regret without attacks). We also provide a high probability guarantee of $mathcal{O}(log T)$ regret with respect to random rewards and random occurrence of attacks. These bounds are achieved under arbitrary and unbounded reward perturbation as long as the attack probability does not exceed a certain constant threshold. We provide multiple synthetic simulations of the proposed algorithms to verify these claims and showcase the inability of existing techniques to achieve sublinear regret. We also provide experimental results of the algorithm operating in a cognitive radio setting using multiple software-defined radios.



rate research

Read More

We study the problem of corralling stochastic bandit algorithms, that is combining multiple bandit algorithms designed for a stochastic environment, with the goal of devising a corralling algorithm that performs almost as well as the best base algorithm. We give two general algorithms for this setting, which we show benefit from favorable regret guarantees. We show that the regret of the corralling algorithms is no worse than that of the best algorithm containing the arm with the highest reward, and depends on the gap between the highest reward and other rewards.
159 - Tao Bai , Jun Zhao , Jinlin Zhu 2020
Deep neural networks (DNNs) are vulnerable to adversarial examples, which are crafted by adding imperceptible perturbations to inputs. Recently different attacks and strategies have been proposed, but how to generate adversarial examples perceptually realistic and more efficiently remains unsolved. This paper proposes a novel framework called Attack-Inspired GAN (AI-GAN), where a generator, a discriminator, and an attacker are trained jointly. Once trained, it can generate adversarial perturbations efficiently given input images and target classes. Through extensive experiments on several popular datasets eg MNIST and CIFAR-10, AI-GAN achieves high attack success rates and reduces generation time significantly in various settings. Moreover, for the first time, AI-GAN successfully scales to complicated datasets eg CIFAR-100 with around $90%$ success rates among all classes.
Recent years have witnessed the emergence and development of graph neural networks (GNNs), which have been shown as a powerful approach for graph representation learning in many tasks, such as node classification and graph classification. The research on the robustness of these models has also started to attract attentions in the machine learning field. However, most of the existing work in this area focus on the GNNs for node-level tasks, while little work has been done to study the robustness of the GNNs for the graph classification task. In this paper, we aim to explore the vulnerability of the Hierarchical Graph Pooling (HGP) Neural Networks, which are advanced GNNs that perform very well in the graph classification in terms of prediction accuracy. We propose an adversarial attack framework for this task. Specifically, we design a surrogate model that consists of convolutional and pooling operators to generate adversarial samples to fool the hierarchical GNN-based graph classification models. We set the preserved nodes by the pooling operator as our attack targets, and then we perturb the attack targets slightly to fool the pooling operator in hierarchical GNNs so that they will select the wrong nodes to preserve. We show the adversarial samples generated from multiple datasets by our surrogate model have enough transferability to attack current state-of-art graph classification models. Furthermore, we conduct the robust train on the target models and demonstrate that the retrained graph classification models are able to better defend against the attack from the adversarial samples. To the best of our knowledge, this is the first work on the adversarial attack against hierarchical GNN-based graph classification models.
Deep neural networks have achieved impressive performance in various areas, but they are shown to be vulnerable to adversarial attacks. Previous works on adversarial attacks mainly focused on the single-task setting. However, in real applications, it is often desirable to attack several models for different tasks simultaneously. To this end, we propose Multi-Task adversarial Attack (MTA), a unified framework that can craft adversarial examples for multiple tasks efficiently by leveraging shared knowledge among tasks, which helps enable large-scale applications of adversarial attacks on real-world systems. More specifically, MTA uses a generator for adversarial perturbations which consists of a shared encoder for all tasks and multiple task-specific decoders. Thanks to the shared encoder, MTA reduces the storage cost and speeds up the inference when attacking multiple tasks simultaneously. Moreover, the proposed framework can be used to generate per-instance and universal perturbations for targeted and non-targeted attacks. Experimental results on the Office-31 and NYUv2 datasets demonstrate that MTA can improve the quality of attacks when compared with its single-task counterpart.
Zeroth-order optimization is an important research topic in machine learning. In recent years, it has become a key tool in black-box adversarial attack to neural network based image classifiers. However, existing zeroth-order optimization algorithms rarely extract second-order information of the model function. In this paper, we utilize the second-order information of the objective function and propose a novel textit{Hessian-aware zeroth-order algorithm} called texttt{ZO-HessAware}. Our theoretical result shows that texttt{ZO-HessAware} has an improved zeroth-order convergence rate and query complexity under structured Hessian approximation, where we propose a few approximation methods for estimating Hessian. Our empirical studies on the black-box adversarial attack problem validate that our algorithm can achieve improved success rates with a lower query complexity.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا