No Arabic abstract
Recent years have witnessed the emergence and development of graph neural networks (GNNs), which have been shown as a powerful approach for graph representation learning in many tasks, such as node classification and graph classification. The research on the robustness of these models has also started to attract attentions in the machine learning field. However, most of the existing work in this area focus on the GNNs for node-level tasks, while little work has been done to study the robustness of the GNNs for the graph classification task. In this paper, we aim to explore the vulnerability of the Hierarchical Graph Pooling (HGP) Neural Networks, which are advanced GNNs that perform very well in the graph classification in terms of prediction accuracy. We propose an adversarial attack framework for this task. Specifically, we design a surrogate model that consists of convolutional and pooling operators to generate adversarial samples to fool the hierarchical GNN-based graph classification models. We set the preserved nodes by the pooling operator as our attack targets, and then we perturb the attack targets slightly to fool the pooling operator in hierarchical GNNs so that they will select the wrong nodes to preserve. We show the adversarial samples generated from multiple datasets by our surrogate model have enough transferability to attack current state-of-art graph classification models. Furthermore, we conduct the robust train on the target models and demonstrate that the retrained graph classification models are able to better defend against the attack from the adversarial samples. To the best of our knowledge, this is the first work on the adversarial attack against hierarchical GNN-based graph classification models.
Deep learning on graph structures has shown exciting results in various applications. However, few attentions have been paid to the robustness of such models, in contrast to numerous research work for image or text adversarial attack and defense. In this paper, we focus on the adversarial attacks that fool the model by modifying the combinatorial structure of data. We first propose a reinforcement learning based attack method that learns the generalizable attack policy, while only requiring prediction labels from the target classifier. Also, variants of genetic algorithms and gradient methods are presented in the scenario where prediction confidence or gradients are available. We use both synthetic and real-world data to show that, a family of Graph Neural Network models are vulnerable to these attacks, in both graph-level and node-level classification tasks. We also show such attacks can be used to diagnose the learned classifiers.
Graph neural networks (GNNs) have achieved high performance in analyzing graph-structured data and have been widely deployed in safety-critical areas, such as finance and autonomous driving. However, only a few works have explored GNNs robustness to adversarial attacks, and their designs are usually limited by the scale of input datasets (i.e., focusing on small graphs with only thousands of nodes). In this work, we propose, SAG, the first scalable adversarial attack method with Alternating Direction Method of Multipliers (ADMM). We first decouple the large-scale graph into several smaller graph partitions and cast the original problem into several subproblems. Then, we propose to solve these subproblems using projected gradient descent on both the graph topology and the node features that lead to considerably lower memory consumption compared to the conventional attack methods. Rigorous experiments further demonstrate that SAG can significantly reduce the computation and memory overhead compared with the state-of-the-art approach, making SAG applicable towards graphs with large size of nodes and edges.
Graph deep learning models, such as graph convolutional networks (GCN) achieve remarkable performance for tasks on graph data. Similar to other types of deep models, graph deep learning models often suffer from adversarial attacks. However, compared with non-graph data, the discrete features, graph connections and different definitions of imperceptible perturbations bring unique challenges and opportunities for the adversarial attacks and defenses for graph data. In this paper, we propose both attack and defense techniques. For attack, we show that the discreteness problem could easily be resolved by introducing integrated gradients which could accurately reflect the effect of perturbing certain features or edges while still benefiting from the parallel computations. For defense, we observe that the adversarially manipulated graph for the targeted attack differs from normal graphs statistically. Based on this observation, we propose a defense approach which inspects the graph and recovers the potential adversarial perturbations. Our experiments on a number of datasets show the effectiveness of the proposed methods.
Node injection attack on Graph Neural Networks (GNNs) is an emerging and practical attack scenario that the attacker injects malicious nodes rather than modifying original nodes or edges to affect the performance of GNNs. However, existing node injection attacks ignore extremely limited scenarios, namely the injected nodes might be excessive such that they may be perceptible to the target GNN. In this paper, we focus on an extremely limited scenario of single node injection evasion attack, i.e., the attacker is only allowed to inject one single node during the test phase to hurt GNNs performance. The discreteness of network structure and the coupling effect between network structure and node features bring great challenges to this extremely limited scenario. We first propose an optimization-based method to explore the performance upper bound of single node injection evasion attack. Experimental results show that 100%, 98.60%, and 94.98% nodes on three public datasets are successfully attacked even when only injecting one node with one edge, confirming the feasibility of single node injection evasion attack. However, such an optimization-based method needs to be re-optimized for each attack, which is computationally unbearable. To solve the dilemma, we further propose a Generalizable Node Injection Attack model, namely G-NIA, to improve the attack efficiency while ensuring the attack performance. Experiments are conducted across three well-known GNNs. Our proposed G-NIA significantly outperforms state-of-the-art baselines and is 500 times faster than the optimization-based method when inferring.
With the success of the graph embedding model in both academic and industry areas, the robustness of graph embedding against adversarial attack inevitably becomes a crucial problem in graph learning. Existing works usually perform the attack in a white-box fashion: they need to access the predictions/labels to construct their adversarial loss. However, the inaccessibility of predictions/labels makes the white-box attack impractical to a real graph learning system. This paper promotes current frameworks in a more general and flexible sense -- we demand to attack various kinds of graph embedding models with black-box driven. We investigate the theoretical connections between graph signal processing and graph embedding models and formulate the graph embedding model as a general graph signal process with a corresponding graph filter. Therefore, we design a generalized adversarial attacker: GF-Attack. Without accessing any labels and model predictions, GF-Attack can perform the attack directly on the graph filter in a black-box fashion. We further prove that GF-Attack can perform an effective attack without knowing the number of layers of graph embedding models. To validate the generalization of GF-Attack, we construct the attacker on four popular graph embedding models. Extensive experiments validate the effectiveness of GF-Attack on several benchmark datasets.