Do you want to publish a course? Click here

Corralling Stochastic Bandit Algorithms

89   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the problem of corralling stochastic bandit algorithms, that is combining multiple bandit algorithms designed for a stochastic environment, with the goal of devising a corralling algorithm that performs almost as well as the best base algorithm. We give two general algorithms for this setting, which we show benefit from favorable regret guarantees. We show that the regret of the corralling algorithms is no worse than that of the best algorithm containing the arm with the highest reward, and depends on the gap between the highest reward and other rewards.



rate research

Read More

The multi-armed bandit formalism has been extensively studied under various attack models, in which an adversary can modify the reward revealed to the player. Previous studies focused on scenarios where the attack value either is bounded at each round or has a vanishing probability of occurrence. These models do not capture powerful adversaries that can catastrophically perturb the revealed reward. This paper investigates the attack model where an adversary attacks with a certain probability at each round, and its attack value can be arbitrary and unbounded if it attacks. Furthermore, the attack value does not necessarily follow a statistical distribution. We propose a novel sample median-based and exploration-aided UCB algorithm (called med-E-UCB) and a median-based $epsilon$-greedy algorithm (called med-$epsilon$-greedy). Both of these algorithms are provably robust to the aforementioned attack model. More specifically we show that both algorithms achieve $mathcal{O}(log T)$ pseudo-regret (i.e., the optimal regret without attacks). We also provide a high probability guarantee of $mathcal{O}(log T)$ regret with respect to random rewards and random occurrence of attacks. These bounds are achieved under arbitrary and unbounded reward perturbation as long as the attack probability does not exceed a certain constant threshold. We provide multiple synthetic simulations of the proposed algorithms to verify these claims and showcase the inability of existing techniques to achieve sublinear regret. We also provide experimental results of the algorithm operating in a cognitive radio setting using multiple software-defined radios.
Bandit problems with linear or concave reward have been extensively studied, but relatively few works have studied bandits with non-concave reward. This work considers a large family of bandit problems where the unknown underlying reward function is non-concave, including the low-rank generalized linear bandit problems and two-layer neural network with polynomial activation bandit problem. For the low-rank generalized linear bandit problem, we provide a minimax-optimal algorithm in the dimension, refuting both conjectures in [LMT21, JWWN19]. Our algorithms are based on a unified zeroth-order optimization paradigm that applies in great generality and attains optimal rates in several structured polynomial settings (in the dimension). We further demonstrate the applicability of our algorithms in RL in the generative model setting, resulting in improved sample complexity over prior approaches. Finally, we show that the standard optimistic algorithms (e.g., UCB) are sub-optimal by dimension factors. In the neural net setting (with polynomial activation functions) with noiseless reward, we provide a bandit algorithm with sample complexity equal to the intrinsic algebraic dimension. Again, we show that optimistic approaches have worse sample complexity, polynomial in the extrinsic dimension (which could be exponentially worse in the polynomial degree).
67 - Kumar Ashutosh 2020
We study regret minimization in a stochastic multi-armed bandit setting and establish a fundamental trade-off between the regret suffered under an algorithm, and its statistical robustness. Considering broad classes of underlying arms distributions, we show that bandit learning algorithms with logarithmic regret are always inconsistent and that consistent learning algorithms always suffer a super-logarithmic regret. This result highlights the inevitable statistical fragility of all `logarithmic regret bandit algorithms available in the literature---for instance, if a UCB algorithm designed for $sigma$-subGaussian distributions is used in a subGaussian setting with a mismatched variance parameter, the learning performance could be inconsistent. Next, we show a positive result: statistically robust and consistent learning performance is attainable if we allow the regret to be slightly worse than logarithmic. Specifically, we propose three classes of distribution oblivious algorithms that achieve an asymptotic regret that is arbitrarily close to logarithmic.
104 - Junya Honda 2019
A classic setting of the stochastic K-armed bandit problem is considered in this note. In this problem it has been known that KL-UCB policy achieves the asymptotically optimal regret bound and KL-UCB+ policy empirically performs better than the KL-UCB policy although the regret bound for the original form of the KL-UCB+ policy has been unknown. This note demonstrates that a simple proof of the asymptotic optimality of the KL-UCB+ policy can be given by the same technique as those used for analyses of other known policies.
We study the structure of regret-minimizing policies in the many-armed Bayesian multi-armed bandit problem: in particular, with k the number of arms and T the time horizon, we consider the case where k > sqrt{T}. We first show that subsampling is a critical step for designing optimal policies. In particular, the standard UCB algorithm leads to sub-optimal regret bounds in this regime. However, a subsampled UCB (SS-UCB), which samples sqrt{T} arms and executes UCB only on that subset, is rate-optimal. Despite theoretically optimal regret, even SS-UCB performs poorly due to excessive exploration of suboptimal arms. In fact, in numerical experiments SS-UCB performs worse than a simple greedy algorithm (and its subsampled version) that pulls the current empirical best arm at every time period. We show that these insights hold even in a contextual setting, using real-world data. These empirical results suggest a novel form of free exploration in the many-armed regime that benefits greedy algorithms. We theoretically study this new source of free exploration and find that it is deeply connected to the distribution of a certain tail event for the prior distribution of arm rewards. This is a fundamentally distinct phenomenon from free exploration as discussed in the recent literature on contextual bandits, where free exploration arises due to variation in contexts. We prove that the subsampled greedy algorithm is rate-optimal for Bernoulli bandits when k > sqrt{T}, and achieves sublinear regret with more general distributions. This is a case where theoretical rate optimality does not tell the whole story: when complemented by the empirical observations of our paper, the power of greedy algorithms becomes quite evident. Taken together, from a practical standpoint, our results suggest that in applications it may be preferable to use a variant of the greedy algorithm in the many-armed regime.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا