No Arabic abstract
Germanium (Ge) detectors with ability of measuring a single electron-hole (e-h) pair are needed in searching for light dark matter (LDM) down to the MeV scale. We investigate the feasibility of Ge detectors with amorphous-Ge (a-Ge) contacts to achieve the sensitivity of measuring a single e-h pair, which requires extremely low leakage current. Three Ge detectors with a-Ge contacts are used to study the charge barrier height for blocking electrons and holes. Using the measured bulk leakage current and the D$ddot{o}$hler-Brodsky model, we obtain the values for charge barrier height and the density of localized energy states near the Fermi energy level for the top and bottom contacts, respectively. We predict that the bulk leakage current is extremely small and can be neglected at helium temperature ($sim$4 K). Thus, Ge detectors with a-Ge contacts possess the potential to measure a single e-h pair for detecting LDM particles.
Electrical conduction mechanisms in the disordered material system is experimentally studied for p-type amorphous germanium (a-Ge) used for high-purity Ge detector contacts. The localization length and the hopping parameters in a-Ge are determined using the surface leakage current measured from three high-purity planar Ge detectors. The temperature-dependent hopping distance and hopping energy are obtained for a-Ge fabricated as the electrical contact materials for high-purity Ge planar detectors. As a result, we find that the hopping energy in a-Ge increases as temperature increases while the hopping distance in a-Ge decreases as temperature increases. The localization length of a-Ge is on the order of $2.13^{-0.05}_{+0.07} A^circ$ to $5.07^{-0.83}_{+2.58}A^circ$, depending on the density of states near the Fermi energy level within bandgap. Using these parameters, we predict that the surface leakage current from a Ge detector with a-Ge contacts can be much smaller than one yocto amp (yA) at helium temperature, suitable for rare-event physics searches.
Charge trapping degrades the energy resolution of germanium (Ge) detectors, which require to have increased experimental sensitivity in searching for dark matter and neutrinoless double-beta decay. We investigate the charge trapping processes utilizing nine planar detectors fabricated from USD-grown crystals with well-known net impurity levels. The charge collection efficiency as a function of charge trapping length is derived from the Shockley-Ramo theorem. Furthermore, we develop a model that correlates the energy resolution with the charge collection efficiency. This model is then applied to the experimental data. As a result, charge collection efficiency and charge trapping length are determined accordingly. Utilizing the Lax model (further developed by CDMS collaborators), the absolute impurity levels are determined for nine detectors. The knowledge of these parameters when combined with other traits such as the Fano factor serve as a reliable indicator of the intrinsic nature of charge trapping within the crystals. We demonstrate that electron trapping is more severe than hole trapping in a p-type detector and the charge collection efficiency depends on the absolute impurity level of the Ge crystal when an adequate bias voltage is applied to the detector. Negligible charge trapping is found when the absolute impurity level is less than 1.0$times$10$^{11}/$cm$^{3}$ for collecting electrons and 2.0$times$10$^{11}/$cm$^{3}$ for collecting holes.
The exploration of germanium (Ge) detectors with amorphous Ge (a-Ge) contacts has drawn attention to the searches for rare-event physics such as dark matter and neutrinoless double-beta decay. The charge barrier height (CBH) of the a-Ge contacts deposited on the detector surface is crucial to suppress the leakage current of the detector in order to achieve la ow-energy detection threshold and high-energy resolution. The temperature-dependent CBH of a-Ge contacts for three Ge detectors is analyzed to study the bulk leakage current (BLC) characteristics. The detectors were fabricated at the University of South Dakota using homegrown crystals. The CBH is determined from the BLC when the detectors are operated in the reverse bias mode with a guard-ring structure, which separates the BLC from the surface leakage current (SLC). The results show that CBH is temperature dependent. The direct relation of the CBH variation to temperature is related to the barrier inhomogeneities created on the interface of a-Ge and crystalline Ge. The inhomogeneities that occur at the interface were analyzed using the Gaussian distribution model for three detectors. The CBH of a-Ge contact is projected to zero temperature. The implication of the CBH at zero temperature is discussed for Ge detectors with a-Ge contacts in searching for rare-event physics.
Large, high-purity, germanium (HPGe) detectors are needed for neutrinoless double-beta decay and dark matter experiments. Currently, large (> 4 inches in diameter) HPGe crystals can be grown at the University of South Dakota (USD). We verify that the quality of the grown crystals is sufficient for use in large detectors by fabricating and characterizing smaller HPGe detectors made from those crystals. We report the results from eight detectors fabricated over six months using crystals grown at USD. Amorphous germanium (a-Ge) contacts are used for blocking both electrons and holes. Two types of geometry were used to fabricate HPGe detectors. As a result, the fabrication process of small planar detectors at USD is discussed in great detail. The impact of the procedure and geometry on the detector performance was analyzed for eight detectors. We characterized the detectors by measuring the leakage current, capacitance, and energy resolution at 662 keV with a Cs-137 source. Four detectors show good performance, which indicates that crystals grown at USD are suitable for making HPGe detectors.
For the first time, planar high-purity germanium detectors with thin amorphous germanium contacts were successfully operated directly in liquid nitrogen and liquid argon in a cryostat at the Max-Planck-Institut fuer Physics in Munich. The detectors were fabricated at the Lawrence Berkeley National Laboratory and the University of South Dakota, using crystals grown at the University of South Dakota. They survived long-distance transportation and multiple thermal cycles in both cryogenic liquids and showed reasonable leakage currents and spectroscopic performance. Also discussed are the pros and cons of using thin amorphous semiconductor materials as an alternative contact technology in large-scale germanium experiments searching for physics beyond the Standard Model.