Do you want to publish a course? Click here

Implication of the Temperature-Dependent Charge Barrier Height of Amorphous Germanium Contact Detector in Searching for Rare Event Physics

116   0   0.0 ( 0 )
 Added by Dongming Mei
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The exploration of germanium (Ge) detectors with amorphous Ge (a-Ge) contacts has drawn attention to the searches for rare-event physics such as dark matter and neutrinoless double-beta decay. The charge barrier height (CBH) of the a-Ge contacts deposited on the detector surface is crucial to suppress the leakage current of the detector in order to achieve la ow-energy detection threshold and high-energy resolution. The temperature-dependent CBH of a-Ge contacts for three Ge detectors is analyzed to study the bulk leakage current (BLC) characteristics. The detectors were fabricated at the University of South Dakota using homegrown crystals. The CBH is determined from the BLC when the detectors are operated in the reverse bias mode with a guard-ring structure, which separates the BLC from the surface leakage current (SLC). The results show that CBH is temperature dependent. The direct relation of the CBH variation to temperature is related to the barrier inhomogeneities created on the interface of a-Ge and crystalline Ge. The inhomogeneities that occur at the interface were analyzed using the Gaussian distribution model for three detectors. The CBH of a-Ge contact is projected to zero temperature. The implication of the CBH at zero temperature is discussed for Ge detectors with a-Ge contacts in searching for rare-event physics.



rate research

Read More

74 - W.-Z. Wei , R. Panth , J. Liu 2020
Germanium (Ge) detectors with ability of measuring a single electron-hole (e-h) pair are needed in searching for light dark matter (LDM) down to the MeV scale. We investigate the feasibility of Ge detectors with amorphous-Ge (a-Ge) contacts to achieve the sensitivity of measuring a single e-h pair, which requires extremely low leakage current. Three Ge detectors with a-Ge contacts are used to study the charge barrier height for blocking electrons and holes. Using the measured bulk leakage current and the D$ddot{o}$hler-Brodsky model, we obtain the values for charge barrier height and the density of localized energy states near the Fermi energy level for the top and bottom contacts, respectively. We predict that the bulk leakage current is extremely small and can be neglected at helium temperature ($sim$4 K). Thus, Ge detectors with a-Ge contacts possess the potential to measure a single e-h pair for detecting LDM particles.
Charge trapping degrades the energy resolution of germanium (Ge) detectors, which require to have increased experimental sensitivity in searching for dark matter and neutrinoless double-beta decay. We investigate the charge trapping processes utilizing nine planar detectors fabricated from USD-grown crystals with well-known net impurity levels. The charge collection efficiency as a function of charge trapping length is derived from the Shockley-Ramo theorem. Furthermore, we develop a model that correlates the energy resolution with the charge collection efficiency. This model is then applied to the experimental data. As a result, charge collection efficiency and charge trapping length are determined accordingly. Utilizing the Lax model (further developed by CDMS collaborators), the absolute impurity levels are determined for nine detectors. The knowledge of these parameters when combined with other traits such as the Fano factor serve as a reliable indicator of the intrinsic nature of charge trapping within the crystals. We demonstrate that electron trapping is more severe than hole trapping in a p-type detector and the charge collection efficiency depends on the absolute impurity level of the Ge crystal when an adequate bias voltage is applied to the detector. Negligible charge trapping is found when the absolute impurity level is less than 1.0$times$10$^{11}/$cm$^{3}$ for collecting electrons and 2.0$times$10$^{11}/$cm$^{3}$ for collecting holes.
The characterization of detectors fabricated from home-grown crystals is the most direct way to study crystal properties. We fabricated planar detectors from high-purity germanium (HPGe) crystals grown at the University of South Dakota (USD). In the fabrication process, a HPGe crystal slice cut from a USD-grown crystal was coated with a high resistivity thin film of amorphous Ge (a-Ge) followed by depositing a thin layer of aluminum on top of the a-Ge film to define the physical area of the contacts. We investigated the detector performance including the $I$-$V$ characteristics, $C$-$V$ characteristics and spectroscopy measurements for a few detectors. The results document the good quality of the USD-grown crystals and electrical contacts.
We present the design and characterization of a large-area Cryogenic PhotoDetector (CPD) designed for active particle identification in rare event searches, such as neutrinoless double beta decay and dark matter experiments. The detector consists of a $45.6$ $mathrm{cm}^2$ surface area by 1-mm-thick $10.6$ $mathrm{g}$ Si wafer. It is instrumented with a distributed network of Quasiparticle-trap-assisted Electrothermal feedback Transition-edge sensors (QETs) with superconducting critical temperature $T_c=41.5$ $mathrm{mK}$ to measure athermal phonons released from interactions with photons. The detector is characterized and calibrated with a collimated $^{55}$Fe X-ray source incident on the center of the detector. The noise equivalent power is measured to be $1times 10^{-17}$ $mathrm{W}/sqrt{mathrm{Hz}}$ in a bandwidth of $2.7$ $mathrm{kHz}$. The baseline energy resolution is measured to be $sigma_E = 3.86 pm 0.04$ $(mathrm{stat.})^{+0.23}_{-0.00}$ $(mathrm{syst.})$ $mathrm{eV}$ (RMS). The detector also has an expected timing resolution of $sigma_t = 2.3$ $mumathrm{s}$ for $5$ $sigma_E$ events.
94 - H. Jiang , L. T. Yang , Q. Yue 2018
The CDEX-10 experiment searches for light weakly-interacting massive particles, a form of dark matter, at the China JinPing underground laboratory, where approximately 10 kg of germanium detectors are arranged in an array and immersed in liquid nitrogen. Herein, we report on the experimental apparatus, detector characterization, and spectrum analysis of one prototype detector. Owing to the higher rise-time resolution of the CDEX-10 prototype detector as compared with CDEX-1B, we identified the origin of an observed category of extremely fast events. For data analysis of the CDEX-10 prototype, we introduced and applied an improved bulk/surface event discrimination method. The results of the new method were compared to those of the CDEX-1B spectrum. Both sets of results showed good consistency in the 0--12 keVee energy range, except for the 8.0 keV K-shell X-ray peak from the external copper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا