Industrial Control Systems (ICS) are evolving with advances in new technology. The addition of wireless sensors and actuators and new control techniques means that engineering practices from communication systems are being integrated into those used for control systems. The two are engineered in very different ways. Neither engineering approach is capable of accounting for the subtle interactions and interdependence that occur when the two are combined. This paper describes our first steps to bridge this gap, and push the boundaries of both computer communication system and control system design. We present The Separator testbed, a Cyber-Physical testbed enabling our search for a suitable way to engineer systems that combine both computer networks and control systems.
While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. The effect upon particle behaviour of initial position, pitch angle and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges which agree with observed energy spectra.
We prove that for a connected simple graph $G$ with $nle 10$ vertices, and two longest paths $C$ and $D$ in $G$, the intersection of vertex sets $V(C)cap V(D)$ is a separator. This shows that the graph found previously with $n=11$, in which the complement of the intersection of vertex sets $V(C)cap V(D)$ of two longest paths is connected, is minimal.
Radiative alpha-capture, ($alpha,gamma$), reactions play a critical role in nucleosynthesis and nuclear energy generation in a variety of astrophysical environments. The St. George recoil separator at the University of Notre Dames Nuclear Science Laboratory was developed to measure ($alpha,gamma$) reactions in inverse kinematics via recoil detection in order to obtain nuclear reaction cross sections at the low energies of astrophysical interest, while avoiding the $gamma$-background that plagues traditional measurement techniques. Due to the $gamma$-ray produced by the nuclear reaction at the target location, recoil nuclei are produced with a variety of energies and angles, all of which must be accepted by St. George in order to accurately determine the reaction cross section. We demonstrate the energy acceptance of the St. George recoil separator using primary beams of helium, hydrogen, neon, and oxygen, spanning the magnetic and electric rigidity phase space populated by recoils of anticipated ($alpha,gamma$) reaction measurements. We found the performance of St. George meets the design specifications, demonstrating its suitability for ($alpha,gamma$) reaction measurements of astrophysical interest.
The aim of this work is to investigate and characterise particle behaviour in a 3D magnetohydrodynamic (MHD) model of a reconnecting magnetic separator. We use a relativistic guiding-centre test-particle code to investigate electron and proton acceleration in snapshots from 3D MHD separator reconnection experiments, and compare the results with findings from an analytical separator reconnection model studied in a previous investigation. The behaviour and acceleration of large distributions of particles are examined in detail for both analytical and numerical separator reconnection models. Accelerated particle orbit trajectories are shown to follow the separator before leaving the system along the separatrix surface of one of the nulls (determined by particle species) in the system of both models. A sufficiently localised electric field about the separator causes the orbits to appear to follow the spine bounding the separatrix surface field lines instead. We analyse and discuss the locations and spread of accelerated particle orbit final positions, which are seen to change over time in the numerical separator reconnection model. We deduce a simple relationship between the final energy range of particle orbits and the model dimensions, and discuss its implications for observed magnetic separators in the solar corona.
The systematic study of fission fragment yields under different initial conditions provides a valuable experimental benchmark for fission models that aim to understand this complex decay channel and to predict reaction product yields. Inverse kinematics coupled to the use of a high-resolution spectrometer is shown to be a powerful tool to identify and measure the inclusive isotopic yields of fission fragments. In-flight fusion fission was used to produce secondary beams of neutron-rich isotopes in the collision of a 238U beam at 24 MeV/u with 9Be and 12C targets at GANIL using the LISE3 fragment-separator. Unique A,Z,q identification of fission products was attained with the dE-TKE-Brho-ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions that show the importance of different reaction mechanisms for these two targets.