Do you want to publish a course? Click here

Energy Acceptance of the St. George Recoil Separator

106   0   0.0 ( 0 )
 Added by Zach Meisel
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radiative alpha-capture, ($alpha,gamma$), reactions play a critical role in nucleosynthesis and nuclear energy generation in a variety of astrophysical environments. The St. George recoil separator at the University of Notre Dames Nuclear Science Laboratory was developed to measure ($alpha,gamma$) reactions in inverse kinematics via recoil detection in order to obtain nuclear reaction cross sections at the low energies of astrophysical interest, while avoiding the $gamma$-background that plagues traditional measurement techniques. Due to the $gamma$-ray produced by the nuclear reaction at the target location, recoil nuclei are produced with a variety of energies and angles, all of which must be accepted by St. George in order to accurately determine the reaction cross section. We demonstrate the energy acceptance of the St. George recoil separator using primary beams of helium, hydrogen, neon, and oxygen, spanning the magnetic and electric rigidity phase space populated by recoils of anticipated ($alpha,gamma$) reaction measurements. We found the performance of St. George meets the design specifications, demonstrating its suitability for ($alpha,gamma$) reaction measurements of astrophysical interest.



rate research

Read More

A novel fusion product separator, based on a gas-filled 8 T superconducting solenoid has been developed at the Australian National University. Though the transmission efficiency of the solenoid is very high, precision cross section measurements require knowledge of the angular distribution of the evaporation residues. A method has been developed to deduce the angular distribution of the evaporation residues from the laboratory-frame velocity distribution of the evaporation residues measured at the exit of the separator. The features of this method are presented, focusing on the example of $^{34}$S+$^{89}$Y which is compared to an independent measurement of the angular distribution. The establishment of this method now allows the novel solenoidal separator to be used to obtain reliable, precision fusion cross-sections.
To improve the ability of particle identification of the RIBLL2 separator at the HIRFL-CSR complex, a new high-performance detector for measuring fragment starting time and position at the F1 dispersive plane has been constructed and installed, and a method for achieving precise Br{ho} determination has been developed using the experimentally derived ion-optical transfer matrix elements from the measured position and ToF information. Using the high-performance detectors and the precise Br{ho} determination method, the fragments produced by the fragmentation of 78Kr at 300 MeV/nucleon were identified clearly at the RIBLL2-ETF under full momentum acceptance. The atomic number Z resolution of {sigma}Z~0.19 and the mass-to-charge ratio A/Q resolution of {sigma}A/Q~5.8e-3 were obtained for the 75As33+ fragment. This great improvement will increase the collection efficiency of exotic nuclei, extend the range of nuclei of interest from the A<40 mass region up to the A~80 mass region, and promote the development of radioactive nuclear beam experiments at the RIBLL2 separator.
The DRAGON recoil mass separator at TRIUMF exists to study radiative proton and alpha capture reactions, which are important in a variety of astrophysical scenarios. DRAGON experiments require a data acquisition system that can be triggered on either reaction product ($gamma$ ray or heavy ion), with the additional requirement of being able to promptly recognize coincidence events in an online environment. To this end, we have designed and implemented a new data acquisition system for DRAGON which consists of two independently triggered readouts. Events from both systems are recorded with timestamps from a $20$ MHz clock that are used to tag coincidences in the earliest possible stage of the data analysis. Here we report on the design, implementation, and commissioning of the new DRAGON data acquisition system, including the hardware, trigger logic, coincidence reconstruction algorithm, and live time considerations. We also discuss the results of an experiment commissioning the new system, which measured the strength of the $E_{text{c}.text{m}.} = 1113$ keV resonance in the $^{20}$Ne$left(p, gamma right)^{21}$Na radiative proton capture reaction.
312 - N. Fukuda , T. Kubo , T. Ohnishi 2013
We have developed a method for achieving excellent resolving power in in-flight particle identification of radioactive isotope (RI) beams at the BigRIPS fragment separator at the RIKEN Nishina Center RI Beam Factory (RIBF). In the BigRIPS separator, RI beams are identified by their atomic number Z and mass-to-charge ratio A/Q which are deduced from the measurements of time of flight (TOF), magnetic rigidity (Brho) and energy loss (delta-E), and delivered as tagged RI beams to a variety of experiments including secondary reaction measurements. High A/Q resolution is an essential requirement for this scheme, because the charge state Q of RI beams has to be identified at RIBF energies such as 200-300 MeV/nucleon. By precisely determining the Brho and TOF values, we have achieved relative A/Q resolution as good as 0.034% (root-mean-square value). The achieved A/Q resolution is high enough to clearly identify the charge state Q in the Z versus A/Q particle identification plot, where fully-stripped and hydrogen-like peaks are very closely located. The precise Brho determination is achieved by refined particle trajectory reconstruction, while a slew correction is performed to precisely determine the TOF value. Furthermore background events are thoroughly removed to improve reliability of the particle identification. In the present paper we present the details of the particle identification scheme in the BigRIPS separator. The isotope separation in the BigRIPS separator is also briefly introduced.
Absolute measurements of neutron fluence are an essential prerequisite of neutron-induced cross section measurements, neutron beam lines characterization and dosimetric investigations. The H(n,p) elastic scattering cross section is a very well known standard used to perform precise neutron flux measurements in high precision measurements. The use of this technique, with proton recoil detectors, is not straightforward below incident neutron energy of 1 MeV, due to a high background in the detected proton spectrum. Experiments have been carried out at the AIFIRA facility to investigate such background and to determine its origin and components. Based on these investigations, a gaseous proton-recoil detector has been designed with a reduced low energy background. A first test of this detector has been carried out at the AIFIRA facility, and first results will be presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا