No Arabic abstract
The aim of this work is to investigate and characterise particle behaviour in a 3D magnetohydrodynamic (MHD) model of a reconnecting magnetic separator. We use a relativistic guiding-centre test-particle code to investigate electron and proton acceleration in snapshots from 3D MHD separator reconnection experiments, and compare the results with findings from an analytical separator reconnection model studied in a previous investigation. The behaviour and acceleration of large distributions of particles are examined in detail for both analytical and numerical separator reconnection models. Accelerated particle orbit trajectories are shown to follow the separator before leaving the system along the separatrix surface of one of the nulls (determined by particle species) in the system of both models. A sufficiently localised electric field about the separator causes the orbits to appear to follow the spine bounding the separatrix surface field lines instead. We analyse and discuss the locations and spread of accelerated particle orbit final positions, which are seen to change over time in the numerical separator reconnection model. We deduce a simple relationship between the final energy range of particle orbits and the model dimensions, and discuss its implications for observed magnetic separators in the solar corona.
While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. The effect upon particle behaviour of initial position, pitch angle and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges which agree with observed energy spectra.
Twisted coronal loops should be ubiquitous in the solar corona. Twisted magnetic fields contain excess magnetic energy, which can be released during magnetic reconnection, causing solar flares. The aim of this work is to investigate magnetic reconnection, and particle acceleration and transport in kink-unstable twisted coronal loops, with a focus on the effects of resistivity, loop geometry and atmospheric stratification. Another aim is to perform forward-modelling of bremsstrahlung emission and determine the structure of hard X-ray sources. We use a combination of magnetohydrodynamic (MHD) and test-particle methods. First, the evolution of the kinking coronal loop is considered using resistive MHD model, incorporating atmospheric stratification and loop curvature. Then, the obtained electric and magnetic fields and density distributions are used to calculate electron and proton trajectories using a guiding-centre approximation, taking into account Coulomb collisions. It is shown that electric fields in twisted coronal loops can effectively accelerate protons and electrons to energies up to 10 MeV. High-energy particles have hard, nearly power-law energy spectra. The volume occupied by high-energy particles demonstrates radial expansion, which results in the expansion of the visible hard X-ray loop and a gradual increase in hard X-ray footpoint area. Synthesised hard X-ray emission reveals strong footpoint sources and the extended coronal source, whose intensity strongly depends on the coronal loop density.
We model the diffusive shock acceleration of particles in a system of two colliding shock waves and present a method to solve the time-dependent problem analytically in the test-particle approximation and high energy limit. In particular, we show that in this limit the problem can be analysed with the help of a self-similar solution. While a number of recent works predict hard ($E^{-1}$) spectra for the accelerated particles in the stationary limit, or the appearance of spectral breaks, we found instead that the spectrum of accelerated particles in a time-dependent collision follows quite closely the canonical $E^{-2}$ prediction of diffusive shock acceleration at a single shock, except at the highest energy, where a hardening appears, originating a bumpy feature just before the exponential cutoff. We also investigated the effect of the reacceleration of pre-existing cosmic rays by a system of two shocks, and found that under certain conditions spectral features can appear in the cutoff region. Finally, the mathematical methods presented here are very general and could be easily applied to a variety of astrophysical situations, including for instance standing shocks in accretion flows, diverging shocks, backward collisions of a slow shock by a faster shock, and wind-wind or shock-wind collisions.
Using fully kinetic 3D simulations, the reconnection dynamics of asymmetric current sheets are examined at the Earths magnetopause. The plasma parameters are selected to model MMS magnetopause diffusion region crossings with guide fields of 0.1, 0.4, and 1 of the reconnecting magnetosheath field. In each case, strong drift-wave fluctuations are observed in the lower-hybrid frequency range at the steep density gradient across the magnetospheric separatrix. These fluctuations give rise to cross-field electron particle transport. In addition, this turbulent mixing leads to significantly enhanced electron parallel heating in comparison to 2D simulations. We study three different methods of quantifying the anomalous dissipation produced by the drift fluctuations, based on spatial averaging, temporal averaging, and temporal averaging followed by integrating along magnetic field lines. Comparison of the different methods reveals complications in identifying and measuring the anomalous dissipation. Nevertheless, the anomalous dissipation from short wavelength drift fluctuations appears weak for each case, and the reconnection rates observed in 3D are nearly the same as in 2D models. The 3D simulations feature a number of interesting new features that are consistent with recent MMS observations, including cold beams of magnetosheath electrons that penetrate into the hotter magnetospheric inflow, the related observation of decreasing temperature in regions of increasing total density, and an effective turbulent diffusion coefficient that agrees with predictions from quasi-linear theory.
We study a model of particle acceleration coupled with an MHD model of magnetic reconnection in unstable twisted coronal loops. The kink instability leads to the formation of helical currents with strong parallel electric fields resulting in electron acceleration. The motion of electrons in the electric and magnetic fields of the reconnecting loop is investigated using a test-particle approach taking into account collisional scattering. We discuss the effects of Coulomb collisions and magnetic convergence near loop footpoints on the spatial distribution and energy spectra of high-energy electron populations and possible implications on the hard X-ray emission in solar flares.