Do you want to publish a course? Click here

General Prescription for Global U(1)s in 6D SCFTs

177   0   0.0 ( 0 )
 Added by Jonathan Heckman
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We present a general prescription for determining the global U(1) symmetries of six-dimensional superconformal field theories (6D SCFTs). We use the quiver-like gauge theory description of the tensor branch to identify candidate U(1) symmetries which can act on generalized matter. The condition that these candidate U(1)s are free of Adler-Bell-Jackiw (ABJ) anomalies provides bottom-up constraints for U(1)s. This agrees with the answer obtained from symmetry breaking patterns induced by Higgs branch flows. We provide numerous examples illustrating the details of this proposal. In the F-theory realization of these theories, some of these symmetries originate from deformations of non-abelian flavor symmetries localized on a component of the discriminant, while others come from an additional generator of the Mordell-Weil group. We also provide evidence that some of these global U(1)s do not arise from gauge symmetries, as would happen in taking a decoupling limit of a model coupled to six-dimensional supergravity.



rate research

Read More

150 - Jonathan J. Heckman 2020
We consider a class of 6D superconformal field theories (SCFTs) which have a large $N$ limit and a semi-classical gravity dual description. Using the quiver-like structure of 6D SCFTs we study a subsector of operators protected from large operator mixing. These operators are characterized by degrees of freedom in a one-dimensional spin chain, and the associated states are generically highly entangled. This provides a concrete realization of qubit-like states in a strongly coupled quantum field theory. Renormalization group flows triggered by deformations of 6D UV fixed points translate to specific deformations of these one-dimensional spin chains. We also present a conjectural spin chain Hamiltonian which tracks the evolution of these states as a function of renormalization group flow, and study qubit manipulation in this setting. Similar considerations hold for theories without $AdS$ duals, such as 6D little string theories and 4D SCFTs obtained from compactification of the partial tensor branch theory on a $T^2$.
We consider all 4d $mathcal{N}=2$ theories of class $mathcal{S}$ arising from the compactification of exceptional 6d $(2,0)$ SCFTs on a three-punctured sphere with a simple puncture. We find that each of these 4d theories has another origin as a 6d $(1,0)$ SCFT compactified on a torus, which we check by identifying and comparing the central charges and the flavor symmetry. Each 6d theory is identified with a complex structure deformation of $(mathfrak{e}_n,mathfrak{e}_n)$ minimal conformal matter, which corresponds to a Higgs branch renormalization group flow. We find that this structure is precisely replicated by the partial closure of the punctures in the class $mathcal{S}$ construction. We explain how the plurality of origins makes manifest some aspects of 4d SCFTs, including flavor symmetry enhancements and determining if it is a product SCFT. We further highlight the string theoretic basis for this identification of 4d theories from different origins via mirror symmetry.
Recent work has established a uniform characterization of most 6D SCFTs in terms of generalized quivers with conformal matter. Compactification of the partial tensor branch deformation of these theories on a $T^2$ leads to 4D $mathcal{N} = 2$ SCFTs which are also generalized quivers. Taking products of bifundamental conformal matter operators, we present evidence that there are large R-charge sectors of the theory in which operator mixing is captured by a 1D spin chain Hamiltonian with operator scaling dimensions controlled by a perturbation series in inverse powers of the R-charge. We regulate the inherent divergences present in the 6D computations with the associated 5D Kaluza--Klein theory. In the case of 6D SCFTs obtained from M5-branes probing a $mathbb{C}^{2}/mathbb{Z}_{K}$ singularity, we show that there is a class of operators where the leading order mixing effects are captured by the integrable Heisenberg $XXX_{s=1/2}$ spin chain with open boundary conditions, and similar considerations hold for its $T^2$ reduction to a 4D $mathcal{N}=2$ SCFT. In the case of M5-branes probing more general D- and E-type singularities where generalized quivers have conformal matter, we argue that similar mixing effects are captured by an integrable $XXX_{s}$ spin chain with $s>1/2$. We also briefly discuss some generalizations to other operator sectors as well as little string theories.
Given the recent geometrical classification of 6d $(1,0)$ SCFTs, a major question is how to compute for this large class their elliptic genera. The latter encode the refined BPS spectrum of the SCFTs, which determines geometric invariants of the associated elliptic non-compact Calabi-Yau threefolds. In this paper we establish for all 6d $(1,0)$ SCFTs in the atomic classification blowup equations that fix these elliptic genera to large extent. The latter fall into two types: the unity- and the vanishing blowup equations. For almost all rank one theories, we find unity blowup equations which determine the elliptic genera completely. We develop several techniques to compute elliptic genera and BPS invariants from the blowup equations, including a recursion formula with respect to the number of strings, a Weyl orbit expansion, a refined BPS expansion and an $epsilon_1,epsilon_2$ expansion. For higher-rank theories, we propose a gluing rule to obtain all their blowup equations based on those of rank one theories. For example, we explicitly give the elliptic blowup equations for the three higher-rank non-Higgsable clusters, ADE chain of $-2$ curves and conformal matter theories. We also give the toric construction for many elliptic non-compact Calabi-Yau threefolds which engineer 6d $(1,0)$ SCFTs with various matter representations.
The building blocks of 6d $(1,0)$ SCFTs include certain rank one theories with gauge group $G=SU(3),SO(8),F_4,E_{6,7,8}$. In this paper, we propose a universal recursion formula for the elliptic genera of all such theories. This formula is solved from the elliptic blowup equations introduced in our previous paper. We explicitly compute the elliptic genera and refined BPS invariants, which recover all previous results from topological string theory, modular bootstrap, Hilbert series, 2d quiver gauge theories and 4d $mathcal{N}=2$ superconformal $H_{G}$ theories. We also observe an intriguing relation between the $k$-string elliptic genus and the Schur indices of rank $k$ $H_{G}$ SCFTs, as a generalization of Lockhart-Zottos conjecture at the rank one cases. In a subsequent paper, we deal with all other non-Higgsable clusters with matters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا