No Arabic abstract
The atomic displacements associated with the freezing of metals and salts are calculated by treating crystal growth as an assignment problem through the use of an optimal transport algorithm. Converting these displacements into time scales based on the dynamics of the bulk liquid, we show that we can predict the activation energy for crystal growth rates, including activation energies significantly smaller than those for atomic diffusion in the liquid. The exception to this success, pure metals that freeze into face centred cubic crystals with little to no activation energy, are discussed. The atomic displacements generated by the assignment algorithm allows us to quantify the key roles of crystal structure and liquid caging length in determining the temperature dependence of crystal growth kinetics.
Ice growth has attracted great attention for its capability of fabricating hierarchically porous microstructure. However, the formation of tilted lamellar microstructure during freezing needs to be reconsidered due to the limited control of ice orientation with respect to thermal gradient during in-situ observations, which can greatly enrich our insight into architectural control of porous biomaterials. This paper provides an in-situ study of solid/liquid interface morphology evolution of directionally solidified single crystal ice with its C-axis (optical axis) perpendicular to directions of both thermal gradient and incident light in poly (vinyl alcohol, PVA) solutions. Misty morphology and V-shaped lamellar morphology were clearly observed in-situ for the first time. Quantitative characterizations on lamellar spacing, tilt angle and tip undercooling of lamellar ice platelets provide a clearer insight into the inherent ice growth habit in polymeric aqueous systems and are suggested exert significant impact on future design and optimization in porous biomaterials.
Molecular dynamics simulations of the temperature dependent crystal growth rates of the salts, NaCl and ZnS, from their melts are reported, along with those of a number of pure metals. The growth rate of NaCl and the FCC-forming metals show little evidence of activated control, while that of ZnS and Fe, a BCC forming metal, exhibit activation barriers similar to those observed for diffusion in the melt. Unlike ZnS and Fe, the interfacial inherent structures of NaCl and Cu and Ag are found to be crystalline. We calculate the median displacement between the interfacial liquid and crystalline states and show that this distance is smaller than the cage length, demonstrating that crystal growth in the fast crystallizers can occur via local vibrations and so largely avoid the activated kinetics associated with the larger displacements associated with particle transport.
The stability of organic solar cells is strongly affected by the morphology of the photoactive layers, whose separated crystalline and/or amorphous phases are kinetically quenched far from their thermodynamic equilibrium during the production process. The evolution of these structures during the lifetime of the cell remains poorly understood. In this paper, a phase-field simulation framework is proposed, handling liquid-liquid demixing and polycrystalline growth at the same time in order to investigate the evolution of crystalline immiscible binary systems. We find that initially, the nuclei trigger the spinodal decomposition, while the growing crystals quench the phase coarsening in the amorphous mixture. Conversely, the separated liquid phases guide the crystal growth along the domains of high concentration. It is also demonstrated that with a higher crystallization rate, in the final morphology, single crystals are more structured and form percolating pathways for each material with smaller lateral dimensions.
alpha-Fe single crystals of rhombic dodecahedral habit were grown from a melt of Li$_{84}$N$_{12}$Fe$_{sim 3}$. Crystals of several millimeter along a side form at temperatures around $T approx 800^circ$C. Upon further cooling the growth competes with the formation of Fe-doped Li$_3$N. The b.c.c. structure and good sample quality of alpha-Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90,ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.
Spatial distributions are presented that quantitatively capture how polymer properties (e.g., segment alignment, density, and potential energy) vary with distance from nascent polymer crystals (nuclei) in prototypical polyethylene melts. It is revealed that the spatial extent of nuclei and their interfaces is metric-dependent as is the extent to which nucleus interiors are solid-like. As distance from a nucleus increases, some properties, such as density, decay to melt-like behavior more rapidly than polymer segment alignment, indicating that a polymer nucleus resides in a nematic-like droplet. This nematic-like droplet region coincides with enhanced formation of ordered polymer segments that are not part of the nucleus. It is more favourable to find non-constituent ordered polymer segments near a nucleus than in the surrounding metastable melt, pointing to the possibility of one nucleus inducing the formation of other nuclei. These findings provide a conceptual bridge between polymer crystal nucleation under non-flow and flow conditions, and are used to rationalize previous results.