Do you want to publish a course? Click here

Single ice crystal growth with controlled orientation during directional freezing

119   0   0.0 ( 0 )
 Added by Tongxin Zhang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ice growth has attracted great attention for its capability of fabricating hierarchically porous microstructure. However, the formation of tilted lamellar microstructure during freezing needs to be reconsidered due to the limited control of ice orientation with respect to thermal gradient during in-situ observations, which can greatly enrich our insight into architectural control of porous biomaterials. This paper provides an in-situ study of solid/liquid interface morphology evolution of directionally solidified single crystal ice with its C-axis (optical axis) perpendicular to directions of both thermal gradient and incident light in poly (vinyl alcohol, PVA) solutions. Misty morphology and V-shaped lamellar morphology were clearly observed in-situ for the first time. Quantitative characterizations on lamellar spacing, tilt angle and tip undercooling of lamellar ice platelets provide a clearer insight into the inherent ice growth habit in polymeric aqueous systems and are suggested exert significant impact on future design and optimization in porous biomaterials.



rate research

Read More

Ice growth from liquid phase has been extensively investigated in various conditions, especially for ice freely grown in undercooled water and aqueous solutions. Although unidirectional ice growth plays a significant role in sea ice and freeze casting, the detailed pattern formation of unidirectionally grown ice in an aqueous solution remains elusive. For the first time, we in situ proved a crossover from lamellar to spongy ice morphologies of a single ice crystal via unidirectional freezing of an aqueous solution. The spongy ice morphology originates from the intersect of tilted lamellar ice and is observed in a single ice crystal, which is intrinsically different from the competitive growth of bi-crystal composed of two differently orientated grains in directional solidification. These results provide a complete physical picture of unidirectionally grown ice from aqueous solution and are believed to promote our understanding of various pattern of ice in many relevant domains where pattern formation of ice crystal is vital.
The atomic displacements associated with the freezing of metals and salts are calculated by treating crystal growth as an assignment problem through the use of an optimal transport algorithm. Converting these displacements into time scales based on the dynamics of the bulk liquid, we show that we can predict the activation energy for crystal growth rates, including activation energies significantly smaller than those for atomic diffusion in the liquid. The exception to this success, pure metals that freeze into face centred cubic crystals with little to no activation energy, are discussed. The atomic displacements generated by the assignment algorithm allows us to quantify the key roles of crystal structure and liquid caging length in determining the temperature dependence of crystal growth kinetics.
A new model of crystal growth is presented that describes the phenomena on atomic length and diffusive time scales. The former incorporates elastic and plastic deformation in a natural manner, and the latter enables access to times scales much larger than conventional atomic methods. The model is shown to be consistent with the predictions of Read and Shockley for grain boundary energy, and Matthews and Blakeslee for misfit dislocations in epitaxial growth.
We present the design of a general-purpose convection chamber that produces a stable environment for studying the growth of ice crystals from water vapor in the presence of a background gas. Crystals grow in free fall inside the chamber, where the temperature and supersaturation are well characterized and surprisingly uniform. As crystals fall and land on a substrate, their dimensions are measured using direct imaging and broad-band interferometry. We also present a parameterized model of the supersaturation inside the chamber that is based on differential hygrometer measurements. Using this chamber, we are able to observe the growth and morphology of ice crystals over a broad range of conditions, as a function of temperature, supersaturation, gas constituents, gas pressure, growth time, and other parameters.
We present a study on the growth and characterization of high-quality single-layer MoS$_2$ with a single orientation, i.e. without the presence of mirror domains. This single orientation of the MoS$_2$ layer is established by means of x-ray photoelectron diffraction. The high quality is evidenced by combining scanning tunneling microscopy with x-ray photoelectron spectroscopy measurements. Spin- and angle-resolved photoemission experiments performed on the sample revealed complete spin-polarization of the valence band states near the K and -K points of the Brillouin zone. These findings open up the possibility to exploit the spin and valley degrees of freedom for encoding and processing information in devices that are based on epitaxially grown materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا