Do you want to publish a course? Click here

The Role of Interfacial Inherent Structures in the Fast Crystal Growth from Molten Salts and Metals

101   0   0.0 ( 0 )
 Added by Peter Harrowell
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Molecular dynamics simulations of the temperature dependent crystal growth rates of the salts, NaCl and ZnS, from their melts are reported, along with those of a number of pure metals. The growth rate of NaCl and the FCC-forming metals show little evidence of activated control, while that of ZnS and Fe, a BCC forming metal, exhibit activation barriers similar to those observed for diffusion in the melt. Unlike ZnS and Fe, the interfacial inherent structures of NaCl and Cu and Ag are found to be crystalline. We calculate the median displacement between the interfacial liquid and crystalline states and show that this distance is smaller than the cage length, demonstrating that crystal growth in the fast crystallizers can occur via local vibrations and so largely avoid the activated kinetics associated with the larger displacements associated with particle transport.



rate research

Read More

We present a tutorial on the principles of crystal growth of intermetallic and oxide compounds from molten solutions, with an emphasis on the fundamental principles governing the underlying phase equilibria and phase diagrams of multicomponent systems.
The stability of organic solar cells is strongly affected by the morphology of the photoactive layers, whose separated crystalline and/or amorphous phases are kinetically quenched far from their thermodynamic equilibrium during the production process. The evolution of these structures during the lifetime of the cell remains poorly understood. In this paper, a phase-field simulation framework is proposed, handling liquid-liquid demixing and polycrystalline growth at the same time in order to investigate the evolution of crystalline immiscible binary systems. We find that initially, the nuclei trigger the spinodal decomposition, while the growing crystals quench the phase coarsening in the amorphous mixture. Conversely, the separated liquid phases guide the crystal growth along the domains of high concentration. It is also demonstrated that with a higher crystallization rate, in the final morphology, single crystals are more structured and form percolating pathways for each material with smaller lateral dimensions.
The atomic displacements associated with the freezing of metals and salts are calculated by treating crystal growth as an assignment problem through the use of an optimal transport algorithm. Converting these displacements into time scales based on the dynamics of the bulk liquid, we show that we can predict the activation energy for crystal growth rates, including activation energies significantly smaller than those for atomic diffusion in the liquid. The exception to this success, pure metals that freeze into face centred cubic crystals with little to no activation energy, are discussed. The atomic displacements generated by the assignment algorithm allows us to quantify the key roles of crystal structure and liquid caging length in determining the temperature dependence of crystal growth kinetics.
A new model of crystal growth is presented that describes the phenomena on atomic length and diffusive time scales. The former incorporates elastic and plastic deformation in a natural manner, and the latter enables access to times scales much larger than conventional atomic methods. The model is shown to be consistent with the predictions of Read and Shockley for grain boundary energy, and Matthews and Blakeslee for misfit dislocations in epitaxial growth.
New charge transfer crystals of $pi$-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure is reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-F$_x$, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with $pi$-conjugated donor molecules.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا