Do you want to publish a course? Click here

Versatile Direct Writing of Dopants in a Solid State Host Through Recoil Implantation

53   0   0.0 ( 0 )
 Added by Johannes Fr\\\"och
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Modifying material properties at the nanoscale is crucially important for devices in nanoelectronics, nanophotonics and quantum information. Optically active defects in wide band gap materials, for instance, are vital constituents for the realisation of quantum technologies. Yet, the introduction of atomic defects through direct ion implantation remains a fundamental challenge. Herein, we establish a universal method for material doping by exploiting one of the most fundamental principles of physics - momentum transfer. As a proof of concept, we direct-write arrays of emitters into diamond via momentum transfer from a Xe+ focused ion beam (FIB) to thin films of the group IV dopants pre-deposited onto a diamond surface. We conclusively show that the technique, which we term knock-on doping, can yield ultra-shallow dopant profiles localized to the top 5 nm of the target surface, and use it to achieve sub-50 nm lateral resolution. The knock-on doping method is cost-effective, yet very versatile, powerful and universally suitable for applications such as electronic and magnetic doping of atomically thin materials and engineering of near-surface states of semiconductor devices.



rate research

Read More

83 - D. V. Bochek 2020
We experimentally demonstrate fabrication of tunable high contrast periodic fishnet metasurfaces with 3 um period on 200 nm thick Ge2Sb2Te5 films sputted onto glass and sapphire substrates using direct laser writing technique. We find that the use of sapphire substrate provides better accuracy of metasurface segments due to high thermal conductivity. The advantages of the demonstrated method consist in its simplicity, rapidity, robustness, and the ability of tuning of fabricated structures. This is of crucial importance for the creation of robust and tunable metasurfaces for applications in the field of telecommunications and information processing.
The threading of a polymer chain through a small pore is a classic problem in polymer dynamics and underlies nanopore sensing technology. However important experimental aspects of the polymer motion in a solid-state nanopore, such as an accurate measurement of the velocity variation during translocation, have remained elusive. In this work we analysed the translocation through conical quartz nanopores of a 7 kbp DNA double-strand labelled with six markers equally spaced along its contour. These markers, constructed from DNA hairpins, give direct experimental access to the translocation dynamics. On average we measure a 5% reduction in velocity during the translocation. We also find a striking correlation in velocity fluctuations with a decay constant of 100s of {mu}s. These results shed light on hitherto unresolved problems in the dynamics of DNA translocation and provide guidance for experiments seeking to determine positional information along a DNA strand.
A novel technique is reported to improve the resolution of two-photon direct laser writing lithography. Thanks to the high collimation enabled by extraordinary $varepsilon_{NZ}$ (near-zero) metamaterial features, ultra-thin dielectric hyper resolute nanostructures are within reach. With respect to the standard direct laser writing approach, a size reduction of $89%$ and $50%$ , in height and width respectively, is achieved with the height of the structures adjustable between 5nm and 50nm. The retrieved 2D fabrication parameters are exploited for fabricating hyper resolute 3D structures. In particular, a highly detailed dielectric bas-relief (500 nm of full height) of Da Vincis textit{Lady with an Ermine} has been realized. The proof-of-concept result shows intriguing cues for the current and trendsetting research scenario in anti-counterfeiting applications, flat optics and photonics.
Photothermal heating represents a major constraint that limits the performance of many nanoscale optoelectronic and optomechanical devices including nanolasers, quantum optomechanical resonators, and integrated photonic circuits. Although radiation-pressure damping has been reported to cool an individual vibrational mode of an optomechanical resonator to its quantum ground state, to date the internal material temperature within an optomechanical resonator has not been reported to cool via laser excitation. Here we demonstrate the direct laser refrigeration of a semiconductor optomechanical resonator >20K below room temperature based on the emission of upconverted, anti-Stokes photoluminescence of trivalent ytterbium ions doped within a yttrium-lithium-fluoride (YLF) host crystal. Optically-refrigerating the lattice of a dielectric resonator has the potential to impact several fields including scanning probe microscopy, the sensing of weak forces, the measurement of atomic masses, and the development of radiation-balanced solid-state lasers. In addition, optically refrigerated resonators may be used in the future as a promising starting point to perform motional cooling for exploration of quantum effects at mesoscopic length scales,temperature control within integrated photonic devices, and solid-state laser refrigeration of quantum materials
Thermoacoustic oscillations have been one of the most exciting discoveries of the physics of fluids in the 19th century. Since its inception, scientists have formulated a comprehensive theoretical explanation of the basic phenomenon which has later found several practical applications to engineering devices. To-date, all studies have concentrated on the thermoacoustics of fluid media where this fascinating mechanism was exclusively believed to exist. Our study shows theoretical and numerical evidence of the existence of thermoacoustic instabilities in solid media. Although the underlying physical mechanism is analogous to its counterpart in fluids, the theoretical framework highlights relevant differences that have important implications on the ability to trigger and sustain the thermoacoustic response. This mechanism could pave the way to the development of highly robust and reliable solid-state thermoacoustic engines and refrigerators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا