Do you want to publish a course? Click here

Thermoacoustics of solids: a pathway to solid state engines and refrigerators

47   0   0.0 ( 0 )
 Added by Haitian Hao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermoacoustic oscillations have been one of the most exciting discoveries of the physics of fluids in the 19th century. Since its inception, scientists have formulated a comprehensive theoretical explanation of the basic phenomenon which has later found several practical applications to engineering devices. To-date, all studies have concentrated on the thermoacoustics of fluid media where this fascinating mechanism was exclusively believed to exist. Our study shows theoretical and numerical evidence of the existence of thermoacoustic instabilities in solid media. Although the underlying physical mechanism is analogous to its counterpart in fluids, the theoretical framework highlights relevant differences that have important implications on the ability to trigger and sustain the thermoacoustic response. This mechanism could pave the way to the development of highly robust and reliable solid-state thermoacoustic engines and refrigerators.



rate research

Read More

Photothermal heating represents a major constraint that limits the performance of many nanoscale optoelectronic and optomechanical devices including nanolasers, quantum optomechanical resonators, and integrated photonic circuits. Although radiation-pressure damping has been reported to cool an individual vibrational mode of an optomechanical resonator to its quantum ground state, to date the internal material temperature within an optomechanical resonator has not been reported to cool via laser excitation. Here we demonstrate the direct laser refrigeration of a semiconductor optomechanical resonator >20K below room temperature based on the emission of upconverted, anti-Stokes photoluminescence of trivalent ytterbium ions doped within a yttrium-lithium-fluoride (YLF) host crystal. Optically-refrigerating the lattice of a dielectric resonator has the potential to impact several fields including scanning probe microscopy, the sensing of weak forces, the measurement of atomic masses, and the development of radiation-balanced solid-state lasers. In addition, optically refrigerated resonators may be used in the future as a promising starting point to perform motional cooling for exploration of quantum effects at mesoscopic length scales,temperature control within integrated photonic devices, and solid-state laser refrigeration of quantum materials
165 - Shiqi Sheng , Z. C. Tu 2012
A unified $chi$-criterion for heat devices (including heat engines and refrigerators) which is defined as the product of the energy conversion efficiency and the heat absorbed per unit time by the working substance [de Tom{a}s emph{et al} 2012 textit{Phys. Rev. E} textbf{85} 010104(R)] is optimized for tight-coupling heat engines and refrigerators operating between two heat baths at temperatures $T_c$ and $T_h(>T_c)$. By taking a new convention on the thermodynamic flux related to the heat transfer between two baths, we find that for a refrigerator tightly and symmetrically coupled with two heat baths, the coefficient of performance (i.e., the energy conversion efficiency of refrigerators) at maximum $chi$ asymptotically approaches to $sqrt{varepsilon_C}$ when the relative temperature difference between two heat baths $varepsilon_C^{-1}equiv (T_h-T_c)/T_c$ is sufficiently small. Correspondingly, the efficiency at maximum $chi$ (equivalent to maximum power) for a heat engine tightly and symmetrically coupled with two heat baths is proved to be $eta_C/2+eta_C^2/8$ up to the second order term of $eta_Cequiv (T_h-T_c)/T_h$, which reverts to the universal efficiency at maximum power for tight-coupling heat engines operating between two heat baths at small temperature difference in the presence of left-right symmetry [Esposito emph{et al} 2009 textit{Phys. Rev. Lett.} textbf{102} 130602].
325 - Andrew Ulvestad 2018
Solid state battery technology has recently garnered considerable interest from companies including Toyota, BMW, Dyson, and others. The primary driver behind the commercialization of solid state batteries (SSBs) is to enable the use of lithium metal as the anode, as opposed to the currently used carbon anode, which would result in ~20% energy density improvement. However, no reported solid state battery to date meets all of the performance metrics of state of the art liquid electrolyte lithium ion batteries (LIBs) and indeed several solid state electrolyte (SSE) technologies may never reach parity with current LIBs. We begin with a review of state of the art LIBs, including their current performance characteristics, commercial trends in cost, and future possibilities. We then discuss current SSB research by focusing on three classes of solid state electrolytes: Sulfides, Polymers, and Oxides. We discuss recent and ongoing commercialization attempts in the SSB field. Finally, we conclude with our perspective and timeline for the future of commercial batteries.
Solid state electrolytes are widely considered as the enabler of lithium metal anodes for safe, durable and high energy density rechargeable lithium ion batteries. Despite the promise, failure mechanisms associated with solid state batteries are not well-established, largely due to limited understanding of the chemomechanical factors governing them. We focus on the recent developments in understanding the solid state aspects including the effects of mechanical stresses, constitutive relations, fracture, void formation and outline the gaps in literature. We also provide an overview of the manufacturing and processing of solid state batteries in relation to chemomechanics. The gaps identified provides concrete directions towards the rational design and development of failure resistant solid state batteries.
144 - Chao Li , Xianyi Cao , Kan Wu 2021
We demonstrate a blind zone-suppressed and flash-emitting solid-state Lidar based on lens-assisted beam steering (LABS) technology. As a proof-of-concept demonstration, with a design of subwavelength-gap one-dimensional (1D) long-emitter array and multi-wavelength flash beam emitting, the device was measured to have 5%-blind zone suppression, 0.06{deg}/point-deflection step and 4.2 microsecond-scanning speed. In time-of-flight (TOF) ranging experiments, Lidar systems have field of view of 11.3{deg}* 8.1{deg} (normal device) or 0.9{deg}*8.1{deg} (blind-zone suppressed device), far-field number of resolved points of 192 and a detection distance of 10 m. This work demonstrates the possibility that a new integrated beam-steering technology can be implemented in a Lidar without sacrificing other performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا