Do you want to publish a course? Click here

Experimental characterization of spin-3/2 silicon vacancy centers in 6H-SiC

130   0   0.0 ( 0 )
 Added by Harpreet Singh
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Silicon carbide (SiC) hosts many interesting defects that can potentially serve as qubits for a range of advanced quantum technologies. Some of them have very interesting properties, making them potentially useful, e.g. as interfaces between stationary and flying qubits. Here we present a detailed overview of the relevant properties of the spins in silicon vacancies of the 6H-SiC polytype. This includes the temperature-dependent photoluminescence, optically detected magnetic resonance, and the relaxation times of the longitudinal and transverse components of the spins, during free precession as well as under the influence of different refocusing schemes.

rate research

Read More

Silicon vacancies in silicon carbide have been proposed as an alternative to nitrogen vacancy centers in diamonds for spintronics and quantum technologies. An important precondition for these applications is the initialization of the qubits into a specific quantum state. In this work, we study the optical alignment of the spin 3/2 negatively charged silicon vacancy in 6H-SiC. Using a time-resolved optically detected magnetic resonance technique, we coherently control the silicon vacancy spin ensemble and measure Rabi frequencies and spin-lattice relaxation time of all three transitions. Then to study the optical initialization process of the silicon vacancy spin ensemble, the vacancy spin ensemble is prepared in different ground states and optically excited. We describe a simple rate equation model that can explain the observed behaviour and determine the relevant rate constants.
91 - Bo Li , Xiaoxiao Li , Pengbo Li 2019
We present and analyze an effective scheme for preparing squeezed spin states in a novel spin-mechanical hybrid device, which is realized by a single crystal diamond waveguide with built-in silicon-vacancy (SiV) centers. After studying the strain couplings between the SiV spins and the propagating phonon modes, we show that long-range spin-spin interactions can be achieved under large detuning condition. We model these nonlinear spin-spin couplings with an effective one-axis twisting Hamiltonian, and find that the system can be steered to the squeezed spin states in the practical situations. This work may have interesting applications in high-precision metrology and quantum information.
We demonstrate an all-optical thermometer based on an ensemble of silicon-vacancy centers (SiVs) in diamond by utilizing a temperature dependent shift of the SiV optical zero-phonon line transition frequency, $Deltalambda/Delta T= 6.8,mathrm{GHz/K}$. Using SiVs in bulk diamond, we achieve $70,mathrm{mK}$ precision at room temperature with a sensitivity of $360,mathrm{mK/sqrt{Hz}}$. Finally, we use SiVs in $200,mathrm{nm}$ nanodiamonds as local temperature probes with $521,mathrm{ mK/sqrt{Hz}}$ sensitivity. These results open up new possibilities for nanoscale thermometry in biology, chemistry, and physics, paving the way for control of complex nanoscale systems.
Silicon carbide is a very promising platform for quantum applications because of extraordinary spin and optical properties of point defects in this technologically-friendly material. These properties are strongly influenced by crystal vibrations, but the exact relationship between them and the behavior of spin qubits is not fully investigated. We uncover the local vibrational modes of the Si vacancy spin qubits in as-grown 4H-SiC. We apply the resonant microwave field to isolate the contribution from one particular type of defects, the so-called V2 center, and observe the zero-phonon line together with seven equally-separated phonon replicas. Furthermore, we present first-principles calculations of the photoluminescence lineshape, which are in excellent agreement with our experimental data. To boost up the calculation accuracy and decrease the computation time, we extract the force constants using machine learning algorithms. This allows us to identify dominant modes in the lattice vibrations coupled to an excited electron during optical emission in the Si vacancy. The resonance phonon energy of 36 meV and the Debye-Waller factor of about 6% are obtained. We establish experimentally that the activation energy of the optically-induced spin polarization is given by the local vibrational energy. Our findings give insight into the coupling of electronic states to vibrational modes in SiC spin qubits, which is essential to predict their spin, optical, mechanical and thermal properties. The approach described can be applied to a large variety of spin defects with spectrally overlapped contributions in SiC as well as in other 3D and 2D materials.
Quantum emitters are an integral component for a broad range of quantum technologies including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single photon generation and photon mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime where the excited state lifetime is dominated by spontaneous emission into the cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited state energy decay occurring through spontaneous emission into the cavity mode. We also demonstrate the largest to date coupling strength ($g/2pi=4.9pm0.3 GHz$) and cooperativity ($C=1.4$) for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا