No Arabic abstract
Silicon carbide is a very promising platform for quantum applications because of extraordinary spin and optical properties of point defects in this technologically-friendly material. These properties are strongly influenced by crystal vibrations, but the exact relationship between them and the behavior of spin qubits is not fully investigated. We uncover the local vibrational modes of the Si vacancy spin qubits in as-grown 4H-SiC. We apply the resonant microwave field to isolate the contribution from one particular type of defects, the so-called V2 center, and observe the zero-phonon line together with seven equally-separated phonon replicas. Furthermore, we present first-principles calculations of the photoluminescence lineshape, which are in excellent agreement with our experimental data. To boost up the calculation accuracy and decrease the computation time, we extract the force constants using machine learning algorithms. This allows us to identify dominant modes in the lattice vibrations coupled to an excited electron during optical emission in the Si vacancy. The resonance phonon energy of 36 meV and the Debye-Waller factor of about 6% are obtained. We establish experimentally that the activation energy of the optically-induced spin polarization is given by the local vibrational energy. Our findings give insight into the coupling of electronic states to vibrational modes in SiC spin qubits, which is essential to predict their spin, optical, mechanical and thermal properties. The approach described can be applied to a large variety of spin defects with spectrally overlapped contributions in SiC as well as in other 3D and 2D materials.
Silicon carbide (SiC) hosts many interesting defects that can potentially serve as qubits for a range of advanced quantum technologies. Some of them have very interesting properties, making them potentially useful, e.g. as interfaces between stationary and flying qubits. Here we present a detailed overview of the relevant properties of the spins in silicon vacancies of the 6H-SiC polytype. This includes the temperature-dependent photoluminescence, optically detected magnetic resonance, and the relaxation times of the longitudinal and transverse components of the spins, during free precession as well as under the influence of different refocusing schemes.
Silicon vacancies in silicon carbide have been proposed as an alternative to nitrogen vacancy centers in diamonds for spintronics and quantum technologies. An important precondition for these applications is the initialization of the qubits into a specific quantum state. In this work, we study the optical alignment of the spin 3/2 negatively charged silicon vacancy in 6H-SiC. Using a time-resolved optically detected magnetic resonance technique, we coherently control the silicon vacancy spin ensemble and measure Rabi frequencies and spin-lattice relaxation time of all three transitions. Then to study the optical initialization process of the silicon vacancy spin ensemble, the vacancy spin ensemble is prepared in different ground states and optically excited. We describe a simple rate equation model that can explain the observed behaviour and determine the relevant rate constants.
The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a mechanism for high-fidelity spin-to-photon conversion, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here we demonstrate a high-fidelity spin-to-photon interface in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin-mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on shows promise for future quantum networks based on SiC defects.
We study a nonuniversal contribution to the dephasing rate of conduction electrons due to local vibrational modes. The inelastic scattering rate is strongly influenced by multiphonon excitations, exhibiting oscillatory behaviour. For higher frequencies, it saturates to a finite, coupling dependent value. In the strong coupling limit, the phonon is almost completely softened, and the inelastic cross section reaches its maximal value. This represents a magnetic field insensitive contribution to the dephasing time in mesoscopic systems, in addition to magnetic impurities.
Implementing high-fidelity two-qubit gates in single-electron spin qubits in silicon double quantum dots is still a major challenge. In this work, we employ analytical methods to design control pulses that generate high-fidelity entangling gates for quantum computers based on this platform. Using realistic parameters and initially assuming a noise-free environment, we present simple control pulses that generate CNOT, CPHASE, and CZ gates with average fidelities greater than 99.99% and gate times as short as 45 ns. Moreover, using the local invariants of the systems evolution operator, we show that a simple square pulse generates a CNOT gate in less than 27 ns and with a fidelity greater than 99.99%. Last, we use the same analytical methods to generate two-qubit gates locally equivalent to $sqrt{mathrm{CNOT}}$ and $sqrt{mathrm{CZ}}$ that are used to implement simple two-piece pulse sequences that produce high-fidelity CNOT and CZ gates in the presence of low-frequency noise.