Do you want to publish a course? Click here

Predict and Match: Prophet Inequalities with Uncertain Supply

92   0   0.0 ( 0 )
 Added by Kangning Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare. A seller starts with a set of identical items, and each arriving buyer wants any one item, and has a valuation drawn i.i.d. from a known distribution. Each item, however, disappears after an a priori unknown amount of time that we term the horizon for that item. The seller knows the (possibly different) distribution of the horizon for each item, but not its realization till the item actually disappears. As with the classic prophet inequalities, the goal is to design an online pricing scheme that competes with the prophet that knows the horizon and extracts full social surplus (or welfare). Our main results are for the setting where items have independent horizon distributions satisfying the monotone-hazard-rate (MHR) condition. Here, for any number of items, we achieve a constant-competitive bound via a conceptually simple policy that balances the rate at which buyers are accepted with the rate at which items are removed from the system. We implement this policy via a novel technique of matching via probabilistically simulating departures of the items at future times. Moreover, for a single item and MHR horizon distribution with mean $mu$, we show a tight result: There is a fixed pricing scheme that has competitive ratio at most $2 - 1/mu$, and this is the best achievable in this class. We further show that our results are best possible. First, we show that the competitive ratio is unbounded without the MHR assumption even for one item. Further, even when the horizon distributions are i.i.d. MHR and the number of items becomes large, the competitive ratio of any policy is lower bounded by a constant greater than $1$, which is in sharp contrast to the setting with identical deterministic horizons.



rate research

Read More

We design novel mechanisms for welfare-maximization in two-sided markets. That is, there are buyers willing to purchase items and sellers holding items initially, both acting rationally and strategically in order to maximize utility. Our mechanisms are designed based on a powerful correspondence between two-sided markets and prophet inequalities. They satisfy individual rationality, dominant-strategy incentive compatibility, budget-balance constraints and give constant-factor approximations to the optimal social welfare. We improve previous results in several settings: Our main focus is on matroid double auctions, where the set of buyers who obtain an item needs to be independent in a matroid. We construct two mechanisms, the first being a $1/3$-approximation of the optimal social welfare satisfying strong budget-balance and requiring the agents to trade in a customized order, the second being a $1/2$-approximation, weakly budget-balanced and able to deal with online arrival determined by an adversary. In addition, we construct constant-factor approximations in two-sided markets when buyers need to fulfill a knapsack constraint. Also, in combinatorial double auctions, where buyers have valuation functions over item bundles instead of being interested in only one item, using similar techniques, we design a mechanism which is a $1/2$-approximation of the optimal social welfare, strongly budget-balanced and can deal with online arrival of agents in an adversarial order.
Consider a gambler who observes a sequence of independent, non-negative random numbers and is allowed to stop the sequence at any time, claiming a reward equal to the most recent observation. The famous prophet inequality of Krengel, Sucheston, and Garling asserts that a gambler who knows the distribution of each random variable can achieve at least half as much reward, in expectation, as a prophet who knows the sampled values of each random variable and can choose the largest one. We generalize this result to the setting in which the gambler and the prophet are allowed to make more than one selection, subject to a matroid constraint. We show that the gambler can still achieve at least half as much reward as the prophet; this result is the best possible, since it is known that the ratio cannot be improved even in the original prophet inequality, which corresponds to the special case of rank-one matroids. Generalizing the result still further, we show that under an intersection of p matroid constraints, the prophets reward exceeds the gamblers by a factor of at most O(p), and this factor is also tight. Beyond their interest as theorems about pure online algorithms or optimal stopping rules, these results also have applications to mechanism design. Our results imply improved bounds on the ability of sequential posted-price mechanisms to approximate Bayesian optimal mechanisms in both single-parameter and multi-parameter settings. In particular, our results imply the first efficiently computable constant-factor approximations to the Bayesian optimal revenue in certain multi-parameter settings.
In a classical online decision problem, a decision-maker who is trying to maximize her value inspects a sequence of arriving items to learn their values (drawn from known distributions), and decides when to stop the process by taking the current item. The goal is to prove a prophet inequality: that she can do approximately as well as a prophet with foreknowledge of all the values. In this work, we investigate this problem when the values are allowed to be correlated. Since non-trivial guarantees are impossible for arbitrary correlations, we consider a natural linear correlation structure introduced by Bateni et al. [ESA 2015] as a generalization of the common-base value model of Chawla et al. [GEB 2015]. A key challenge is that threshold-based algorithms, which are commonly used for prophet inequalities, no longer guarantee good performance for linear correlations. We relate this roadblock to another augmentations challenge that might be of independent interest: many existing prophet inequality algorithms are not robust to slight increase in the values of the arriving items. We leverage this intuition to prove bounds (matching up to constant factors) that decay gracefully with the amount of correlation of the arriving items. We extend these results to the case of selecting multiple items by designing a new $(1+o(1))$ approximation ratio algorithm that is robust to augmentations.
We introduce a model of competing agents in a prophet setting, where rewards arrive online, and decisions are made immediately and irrevocably. The rewards are unknown from the outset, but they are drawn from a known probability distribution. In the standard prophet setting, a single agent makes selection decisions in an attempt to maximize her expected reward. The novelty of our model is the introduction of a competition setting, where multiple agents compete over the arriving rewards, and make online selection decisions simultaneously, as rewards arrive. If a given reward is selected by more than a single agent, ties are broken either randomly or by a fixed ranking of the agents. The consideration of competition turns the prophet setting from an online decision making scenario to a multi-agent game. For both random and ranked tie-breaking rules, we present simple threshold strategies for the agents that give them high guarantees, independent of the strategies taken by others. In particular, for random tie-breaking, every agent can guarantee herself at least $frac{1}{k+1}$ of the highest reward, and at least $frac{1}{2k}$ of the optimal social welfare. For ranked tie-breaking, the $i$th ranked agent can guarantee herself at least a half of the $i$th highest reward. We complement these results by matching upper bounds, even with respect to equilibrium profiles. For ranked tie-breaking rule, we also show a correspondence between the equilibrium of the $k$-agent game and the optimal strategy of a single decision maker who can select up to $k$ rewards.
Free order prophet inequalities bound the ratio between the expected value obtained by two parties each selecting a value from a set of independent random variables: a prophet who knows the value of each variable and may select the maximum one, and a gambler who is free to choose the order in which to observe the values but must select one of them immediately after observing it, without knowing what values will be sampled for the unobserved variables. It is known that the gambler can always ensure an expected payoff at least $0.669dots$ times as great as that of the prophet. In fact, there exists a threshold stopping rule which guarantees a gambler-to-prophet ratio of at least $1-frac1e=0.632dots$. In contrast, if the gambler must observe the values in a predetermined order, the tight bound for the gambler-to-prophet ratio is $1/2$. In this work we investigate a model that interpolates between these two extremes. We assume there is a predefined set of permutations, and the gambler is free to choose the order of observation to be any one of these predefined permutations. Surprisingly, we show that even when only two orderings are allowed---namely, the forward and reverse orderings---the gambler-to-prophet ratio improves to $varphi^{-1}=0.618dots$, the inverse of the golden ratio. As the number of allowed permutations grows beyond 2, a striking double plateau phenomenon emerges: after increasing from $0.5$ to $varphi^{-1}$, the gambler-to-prophet ratio achievable by threshold stopping rules does not exceed $varphi^{-1}+o(1)$ until the number of allowed permutations grows to $O(log n)$. The ratio reaches $1-frac1e-varepsilon$ for a suitably chosen set of $O(text{poly}(varepsilon^{-1})cdotlog n)$ permutations and does not exceed $1-frac1e$ even when the full set of $n!$ permutations is allowed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا