Do you want to publish a course? Click here

Human Action Recognition and Assessment via Deep Neural Network Self-Organization

90   0   0.0 ( 0 )
 Added by German I. Parisi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The robust recognition and assessment of human actions are crucial in human-robot interaction (HRI) domains. While state-of-the-art models of action perception show remarkable results in large-scale action datasets, they mostly lack the flexibility, robustness, and scalability needed to operate in natural HRI scenarios which require the continuous acquisition of sensory information as well as the classification or assessment of human body patterns in real time. In this chapter, I introduce a set of hierarchical models for the learning and recognition of actions from depth maps and RGB images through the use of neural network self-organization. A particularity of these models is the use of growing self-organizing networks that quickly adapt to non-stationary distributions and implement dedicated mechanisms for continual learning from temporally correlated input.



rate research

Read More

Recognition of human actions and associated interactions with objects and the environment is an important problem in computer vision due to its potential applications in a variety of domains. The most versatile methods can generalize to various environments and deal with cluttered backgrounds, occlusions, and viewpoint variations. Among them, methods based on graph convolutional networks that extract features from the skeleton have demonstrated promising performance. In this paper, we propose a novel Spatio-Temporal Pyramid Graph Convolutional Network (ST-PGN) for online action recognition for ergonomic risk assessment that enables the use of features from all levels of the skeleton feature hierarchy. The proposed algorithm outperforms state-of-art action recognition algorithms tested on two public benchmark datasets typically used for postural assessment (TUM and UW-IOM). We also introduce a pipeline to enhance postural assessment methods with online action recognition techniques. Finally, the proposed algorithm is integrated with a traditional ergonomic risk index (REBA) to demonstrate the potential value for assessment of musculoskeletal disorders in occupational safety.
Human action recognition from skeleton data, fueled by the Graph Convolutional Network (GCN), has attracted lots of attention, due to its powerful capability of modeling non-Euclidean structure data. However, many existing GCN methods provide a pre-defined graph and fix it through the entire network, which can loss implicit joint correlations. Besides, the mainstream spectral GCN is approximated by one-order hop, thus higher-order connections are not well involved. Therefore, huge efforts are required to explore a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for skeleton-based action recognition. Specifically, we enrich the search space by providing multiple dynamic graph modules after fully exploring the spatial-temporal correlations between nodes. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a sampling- and memory-efficient evolution strategy is proposed to search an optimal architecture for this task. The resulted architecture proves the effectiveness of the higher-order approximation and the dynamic graph modeling mechanism with temporal interactions, which is barely discussed before. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scaled datasets and the results show that our model gets the state-of-the-art results.
This paper analyzes the robustness of deep learning models in autonomous driving applications and discusses the practical solutions to address that.
Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently popular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. We argue that entirely scale-invariant image representations are sub-optimal and investigate approaches to scale coding within a Bag of Deep Features framework. Our approach encodes multi-scale information explicitly during the image encoding stage. We propose two strategies to encode multi-scale information explicitly in the final image representation. We validate our two scale coding techniques on five datasets: Willow, PASCAL VOC 2010, PASCAL VOC 2012, Stanford-40 and Human Attributes (HAT-27). On all datasets, the proposed scale coding approaches outperform both the scale-invariant method and the standard deep features of the same network. Further, combining our scale coding approaches with standard deep features leads to consistent improvement over the state-of-the-art.
Despite the rapid growth in datasets for video activity, stable robust activity recognition with neural networks remains challenging. This is in large part due to the explosion of possible variation in video -- including lighting changes, object variation, movement variation, and changes in surrounding context. An alternative is to make use of simulation data, where all of these factors can be artificially controlled. In this paper, we propose the Randomized Simulation as Augmentation (RSA) framework which augments real-world training data with synthetic data to improve the robustness of action recognition networks. We generate large-scale synthetic datasets with randomized nuisance factors. We show that training with such extra data, when appropriately constrained, can significantly improve the performance of the state-of-the-art I3D networks or, conversely, reduce the number of labeled real videos needed to achieve good performance. Experiments on two real-world datasets NTU RGB+D and VIRAT demonstrate the effectiveness of our method.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا