Do you want to publish a course? Click here

Scale Coding Bag of Deep Features for Human Attribute and Action Recognition

89   0   0.0 ( 0 )
 Added by Rao Muhammad Anwer
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently popular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. We argue that entirely scale-invariant image representations are sub-optimal and investigate approaches to scale coding within a Bag of Deep Features framework. Our approach encodes multi-scale information explicitly during the image encoding stage. We propose two strategies to encode multi-scale information explicitly in the final image representation. We validate our two scale coding techniques on five datasets: Willow, PASCAL VOC 2010, PASCAL VOC 2012, Stanford-40 and Human Attributes (HAT-27). On all datasets, the proposed scale coding approaches outperform both the scale-invariant method and the standard deep features of the same network. Further, combining our scale coding approaches with standard deep features leads to consistent improvement over the state-of-the-art.



rate research

Read More

427 - Alexander Richard 2017
The traditional bag-of-words approach has found a wide range of applications in computer vision. The standard pipeline consists of a generation of a visual vocabulary, a quantization of the features into histograms of visual words, and a classification step for which usually a support vector machine in combination with a non-linear kernel is used. Given large amounts of data, however, the model suffers from a lack of discriminative power. This applies particularly for action recognition, where the vast amount of video features needs to be subsampled for unsupervised visual vocabulary generation. Moreover, the kernel computation can be very expensive on large datasets. In this work, we propose a recurrent neural network that is equivalent to the traditional bag-of-words approach but enables for the application of discriminative training. The model further allows to incorporate the kernel computation into the neural network directly, solving the complexity issue and allowing to represent the complete classification system within a single network. We evaluate our method on four recent action recognition benchmarks and show that the conventional model as well as sparse coding methods are outperformed.
89 - German I. Parisi 2020
The robust recognition and assessment of human actions are crucial in human-robot interaction (HRI) domains. While state-of-the-art models of action perception show remarkable results in large-scale action datasets, they mostly lack the flexibility, robustness, and scalability needed to operate in natural HRI scenarios which require the continuous acquisition of sensory information as well as the classification or assessment of human body patterns in real time. In this chapter, I introduce a set of hierarchical models for the learning and recognition of actions from depth maps and RGB images through the use of neural network self-organization. A particularity of these models is the use of growing self-organizing networks that quickly adapt to non-stationary distributions and implement dedicated mechanisms for continual learning from temporally correlated input.
Action recognition is a key problem in computer vision that labels videos with a set of predefined actions. Capturing both, semantic content and motion, along the video frames is key to achieve high accuracy performance on this task. Most of the state-of-the-art methods rely on RGB frames for extracting the semantics and pre-computed optical flow fields as a motion cue. Then, both are combined using deep neural networks. Yet, it has been argued that such models are not able to leverage the motion information extracted from the optical flow, but instead the optical flow allows for better recognition of people and objects in the video. This urges the need to explore different cues or models that can extract motion in a more informative fashion. To tackle this issue, we propose to explore the predictive coding network, so called PredNet, a recurrent neural network that propagates predictive coding errors across layers and time steps. We analyze whether PredNet can better capture motions in videos by estimating over time the representations extracted from pre-trained networks for action recognition. In this way, the model only relies on the video frames, and does not need pre-processed optical flows as input. We report the effectiveness of our proposed model on UCF101 and HMDB51 datasets.
70 - Jialin Wu , Gu Wang , Wukui Yang 2016
We propose a novel deep supervised neural network for the task of action recognition in videos, which implicitly takes advantage of visual tracking and shares the robustness of both deep Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). In our method, a multi-branch model is proposed to suppress noise from background jitters. Specifically, we firstly extract multi-level deep features from deep CNNs and feed them into 3d-convolutional network. After that we feed those feature cubes into our novel joint LSTM module to predict labels and to generate attention regularization. We evaluate our model on two challenging datasets: UCF101 and HMDB51. The results show that our model achieves the state-of-art by only using convolutional features.
Convolutional Neural Networks (CNNs) are well established models capable of achieving state-of-the-art classification accuracy for various computer vision tasks. However, they are becoming increasingly larger, using millions of parameters, while they are restricted to handling images of fixed size. In this paper, a quantization-based approach, inspired from the well-known Bag-of-Features model, is proposed to overcome these limitations. The proposed approach, called Convolutional BoF (CBoF), uses RBF neurons to quantize the information extracted from the convolutional layers and it is able to natively classify images of various sizes as well as to significantly reduce the number of parameters in the network. In contrast to other global pooling operators and CNN compression techniques the proposed method utilizes a trainable pooling layer that it is end-to-end differentiable, allowing the network to be trained using regular back-propagation and to achieve greater distribution shift invariance than competitive methods. The ability of the proposed method to reduce the parameters of the network and increase the classification accuracy over other state-of-the-art techniques is demonstrated using three image datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا