Do you want to publish a course? Click here

A Correspondence Analysis Framework for Author-Conference Recommendations

196   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

For many years, achievements and discoveries made by scientists are made aware through research papers published in appropriate journals or conferences. Often, established scientists and especially newbies are caught up in the dilemma of choosing an appropriate conference to get their work through. Every scientific conference and journal is inclined towards a particular field of research and there is a vast multitude of them for any particular field. Choosing an appropriate venue is vital as it helps in reaching out to the right audience and also to further ones chance of getting their paper published. In this work, we address the problem of recommending appropriate conferences to the authors to increase their chances of acceptance. We present three different approaches for the same involving the use of social network of the authors and the content of the paper in the settings of dimensionality reduction and topic modeling. In all these approaches, we apply Correspondence Analysis (CA) to derive appropriate relationships between the entities in question, such as conferences and papers. Our models show promising results when compared with existing methods such as content-based filtering, collaborative filtering and hybrid filtering.



rate research

Read More

Language models that utilize extensive self-supervised pre-training from unlabeled text, have recently shown to significantly advance the state-of-the-art performance in a variety of language understanding tasks. However, it is yet unclear if and how these recent models can be harnessed for conducting text-based recommendations. In this work, we introduce RecoBERT, a BERT-based approach for learning catalog-specialized language models for text-based item recommendations. We suggest novel training and inference procedures for scoring similarities between pairs of items, that dont require item similarity labels. Both the training and the inference techniques were designed to utilize the unlabeled structure of textual catalogs, and minimize the discrepancy between them. By incorporating four scores during inference, RecoBERT can infer text-based item-to-item similarities more accurately than other techniques. In addition, we introduce a new language understanding task for wine recommendations using similarities based on professional wine reviews. As an additional contribution, we publish annotated recommendations dataset crafted by human wine experts. Finally, we evaluate RecoBERT and compare it to various state-of-the-art NLP models on wine and fashion recommendations tasks.
101 - Feng Zhu , Yan Wang , Jun Zhou 2021
Cross-Domain Recommendation (CDR) and Cross-System Recommendation (CSR) have been proposed to improve the recommendation accuracy in a target dataset (domain/system) with the help of a source one with relatively richer information. However, most existing CDR and CSR approaches are single-target, namely, there is a single target dataset, which can only help the target dataset and thus cannot benefit the source dataset. In this paper, we focus on three new scenarios, i.e., Dual-Target CDR (DTCDR), Multi-Target CDR (MTCDR), and CDR+CSR, and aim to improve the recommendation accuracy in all datasets simultaneously for all scenarios. To do this, we propose a unified framework, called GA (based on Graph embedding and Attention techniques), for all three scenarios. In GA, we first construct separate heterogeneous graphs to generate more representative user and item embeddings. Then, we propose an element-wise attention mechanism to effectively combine the embeddings of common entities (users/items) learned from different datasets. Moreover, to avoid negative transfer, we further propose a Personalized training strategy to minimize the embedding difference of common entities between a richer dataset and a sparser dataset, deriving three new models, i.e., GA-DTCDR-P, GA-MTCDR-P, and GA-CDR+CSR-P, for the three scenarios respectively. Extensive experiments conducted on four real-world datasets demonstrate that our proposed GA models significantly outperform the state-of-the-art approaches.
News articles usually contain knowledge entities such as celebrities or organizations. Important entities in articles carry key messages and help to understand the content in a more direct way. An industrial news recommender system contains various key applications, such as personalized recommendation, item-to-item recommendation, news category classification, news popularity prediction and local news detection. We find that incorporating knowledge entities for better document understanding benefits these applications consistently. However, existing document understanding models either represent news articles without considering knowledge entities (e.g., BERT) or rely on a specific type of text encoding model (e.g., DKN) so that the generalization ability and efficiency is compromised. In this paper, we propose KRED, which is a fast and effective model to enhance arbitrary document representation with a knowledge graph. KRED first enriches entities embeddings by attentively aggregating information from their neighborhood in the knowledge graph. Then a context embedding layer is applied to annotate the dynamic context of different entities such as frequency, category and position. Finally, an information distillation layer aggregates the entity embeddings under the guidance of the original document representation and transforms the document vector into a new one. We advocate to optimize the model with a multi-task framework, so that different news recommendation applications can be united and useful information can be shared across different tasks. Experiments on a real-world Microsoft News dataset demonstrate that KRED greatly benefits a variety of news recommendation applications.
91 - Mingkai Huang , Hao Li , Bing Bai 2020
Privacy-preserving recommendations are recently gaining momentum, since the decentralized user data is increasingly harder to collect, by recommendation service providers, due to the serious concerns over user privacy and data security. This situation is further exacerbated by the strict government regulations such as Europes General Data Privacy Regulations(GDPR). Federated Learning(FL) is a newly developed privacy-preserving machine learning paradigm to bridge data repositories without compromising data security and privacy. Thus many federated recommendation(FedRec) algorithms have been proposed to realize personalized privacy-preserving recommendations. However, existing FedRec algorithms, mostly extended from traditional collaborative filtering(CF) method, cannot address cold-start problem well. In addition, their performance overhead w.r.t. model accuracy, trained in a federated setting, is often non-negligible comparing to centralized recommendations. This paper studies this issue and presents FL-MV-DSSM, a generic content-based federated multi-view recommendation framework that not only addresses the cold-start problem, but also significantly boosts the recommendation performance by learning a federated model from multiple data source for capturing richer user-level features. The new federated multi-view setting, proposed by FL-MV-DSSM, opens new usage models and brings in new security challenges to FL in recommendation scenarios. We prove the security guarantees of xxx, and empirical evaluations on FL-MV-DSSM and its variations with public datasets demonstrate its effectiveness. Our codes will be released if this paper is accepted.
107 - Wenqi Fan , Xiaorui Liu , Wei Jin 2021
Recommender systems aim to provide personalized services to users and are playing an increasingly important role in our daily lives. The key of recommender systems is to predict how likely users will interact with items based on their historical online behaviors, e.g., clicks, add-to-cart, purchases, etc. To exploit these user-item interactions, there are increasing efforts on considering the user-item interactions as a user-item bipartite graph and then performing information propagation in the graph via Graph Neural Networks (GNNs). Given the power of GNNs in graph representation learning, these GNN-based recommendation methods have remarkably boosted the recommendation performance. Despite their success, most existing GNN-based recommender systems overlook the existence of interactions caused by unreliable behaviors (e.g., random/bait clicks) and uniformly treat all the interactions, which can lead to sub-optimal and unstable performance. In this paper, we investigate the drawbacks (e.g., non-adaptive propagation and non-robustness) of existing GNN-based recommendation methods. To address these drawbacks, we propose the Graph Trend Networks for recommendations (GTN) with principled designs that can capture the adaptive reliability of the interactions. Comprehensive experiments and ablation studies are presented to verify and understand the effectiveness of the proposed framework. Our implementation and datasets can be released after publication.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا