No Arabic abstract
Language models that utilize extensive self-supervised pre-training from unlabeled text, have recently shown to significantly advance the state-of-the-art performance in a variety of language understanding tasks. However, it is yet unclear if and how these recent models can be harnessed for conducting text-based recommendations. In this work, we introduce RecoBERT, a BERT-based approach for learning catalog-specialized language models for text-based item recommendations. We suggest novel training and inference procedures for scoring similarities between pairs of items, that dont require item similarity labels. Both the training and the inference techniques were designed to utilize the unlabeled structure of textual catalogs, and minimize the discrepancy between them. By incorporating four scores during inference, RecoBERT can infer text-based item-to-item similarities more accurately than other techniques. In addition, we introduce a new language understanding task for wine recommendations using similarities based on professional wine reviews. As an additional contribution, we publish annotated recommendations dataset crafted by human wine experts. Finally, we evaluate RecoBERT and compare it to various state-of-the-art NLP models on wine and fashion recommendations tasks.
Most approaches for similar text retrieval and ranking with long natural language queries rely at some level on queries and responses having words in common with each other. Recent applications of transformer-based neural language models to text retrieval and ranking problems have been very promising, but still involve a two-step process in which result candidates are first obtained through bag-of-words-based approaches, and then reranked by a neural transformer. In this paper, we introduce novel approaches for effectively applying neural transformer models to similar text retrieval and ranking without an initial bag-of-words-based step. By eliminating the bag-of-words-based step, our approach is able to accurately retrieve and rank results even when they have no non-stopwords in common with the query. We accomplish this by using bidirectional encoder representations from transformers (BERT) to create vectorized representations of sentence-length texts, along with a vector nearest neighbor search index. We demonstrate both supervised and unsupervised means of using BERT to accomplish this task.
For many years, achievements and discoveries made by scientists are made aware through research papers published in appropriate journals or conferences. Often, established scientists and especially newbies are caught up in the dilemma of choosing an appropriate conference to get their work through. Every scientific conference and journal is inclined towards a particular field of research and there is a vast multitude of them for any particular field. Choosing an appropriate venue is vital as it helps in reaching out to the right audience and also to further ones chance of getting their paper published. In this work, we address the problem of recommending appropriate conferences to the authors to increase their chances of acceptance. We present three different approaches for the same involving the use of social network of the authors and the content of the paper in the settings of dimensionality reduction and topic modeling. In all these approaches, we apply Correspondence Analysis (CA) to derive appropriate relationships between the entities in question, such as conferences and papers. Our models show promising results when compared with existing methods such as content-based filtering, collaborative filtering and hybrid filtering.
Pretrained contextualized language models such as BERT have achieved impressive results on various natural language processing benchmarks. Benefiting from multiple pretraining tasks and large scale training corpora, pretrained models can capture complex syntactic word relations. In this paper, we use the deep contextualized language model BERT for the task of ad hoc table retrieval. We investigate how to encode table content considering the table structure and input length limit of BERT. We also propose an approach that incorporates features from prior literature on table retrieval and jointly trains them with BERT. In experiments on public datasets, we show that our best approach can outperform the previous state-of-the-art method and BERT baselines with a large margin under different evaluation metrics.
Text classification tends to be difficult when data are deficient or when it is required to adapt to unseen classes. In such challenging scenarios, recent studies have often used meta-learning to simulate the few-shot task, thus negating implicit common linguistic features across tasks. This paper addresses such problems using meta-learning and unsupervised language models. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. We show that our approach is not only simple but also produces a state-of-the-art performance on a well-studied sentiment classification dataset. It can thus be further suggested that pretraining could be a promising solution for few-shot learning of many other NLP tasks. The code and the dataset to replicate the experiments are made available at https://github.com/zxlzr/FewShotNLP.
Literature recommendation systems (LRS) assist readers in the discovery of relevant content from the overwhelming amount of literature available. Despite the widespread adoption of LRS, there is a lack of research on the user-perceived recommendation characteristics for fundamentally different approaches to content-based literature recommendation. To complement existing quantitative studies on literature recommendation, we present qualitative study results that report on users perceptions for two contrasting recommendation classes: (1) link-based recommendation represented by the Co-Citation Proximity (CPA) approach, and (2) text-based recommendation represented by Lucenes MoreLikeThis (MLT) algorithm. The empirical data analyzed in our study with twenty users and a diverse set of 40 Wikipedia articles indicate a noticeable difference between text- and link-based recommendation generation approaches along several key dimensions. The text-based MLT method receives higher satisfaction ratings in terms of user-perceived similarity of recommended articles. In contrast, the CPA approach receives higher satisfaction scores in terms of diversity and serendipity of recommendations. We conclude that users of literature recommendation systems can benefit most from hybrid approaches that combine both link- and text-based approaches, where the users information needs and preferences should control the weighting for the approaches used. The optimal weighting of multiple approaches used in a hybrid recommendation system is highly dependent on a users shifting needs.