Do you want to publish a course? Click here

An Unsupervised Deep Learning Method for Multi-coil Cine MRI

419   0   0.0 ( 0 )
 Added by Ziwen Ke
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deep learning has achieved good success in cardiac magnetic resonance imaging (MRI) reconstruction, in which convolutional neural networks (CNNs) learn a mapping from the undersampled k-space to the fully sampled images. Although these deep learning methods can improve the reconstruction quality compared with iterative methods without requiring complex parameter selection or lengthy reconstruction time, the following issues still need to be addressed: 1) all these methods are based on big data and require a large amount of fully sampled MRI data, which is always difficult to obtain for cardiac MRI; 2) the effect of coil correlation on reconstruction in deep learning methods for dynamic MR imaging has never been studied. In this paper, we propose an unsupervised deep learning method for multi-coil cine MRI via a time-interleaved sampling strategy. Specifically, a time-interleaved acquisition scheme is utilized to build a set of fully encoded reference data by directly merging the k-space data of adjacent time frames. Then these fully encoded data can be used to train a parallel network for reconstructing images of each coil separately. Finally, the images from each coil are combined via a CNN to implicitly explore the correlations between coils. The comparisons with classic k-t FOCUSS, k-t SLR, L+S and KLR methods on in vivo datasets show that our method can achieve improved reconstruction results in an extremely short amount of time.



rate research

Read More

Retrospectively gated cine (retro-cine) MRI is the clinical standard for cardiac functional analysis. Deep learning (DL) based methods have been proposed for the reconstruction of highly undersampled MRI data and show superior image quality and magnitude faster reconstruction time than CS-based methods. Nevertheless, it remains unclear whether DL reconstruction is suitable for cardiac function analysis. To address this question, in this study we evaluate and compare the cardiac functional values (EDV, ESV and EF for LV and RV, respectively) obtained from highly accelerated MRI acquisition using DL based reconstruction algorithm (DL-cine) with values from CS-cine and conventional retro-cine. To the best of our knowledge, this is the first work to evaluate the cine MRI with deep learning reconstruction for cardiac function analysis and compare it with other conventional methods. The cardiac functional values obtained from cine MRI with deep learning reconstruction are consistent with values from clinical standard retro-cine MRI.
We propose a novel deep neural network architecture by mapping the robust proximal gradient scheme for fast image reconstruction in parallel MRI (pMRI) with regularization function trained from data. The proposed network learns to adaptively combine the multi-coil images from incomplete pMRI data into a single image with homogeneous contrast, which is then passed to a nonlinear encoder to efficiently extract sparse features of the image. Unlike most of existing deep image reconstruction networks, our network does not require knowledge of sensitivity maps, which can be difficult to estimate accurately, and have been a major bottleneck of image reconstruction in real-world pMRI applications. The experimental results demonstrate the promising performance of our method on a variety of pMRI imaging data sets.
Improving speed and image quality of Magnetic Resonance Imaging (MRI) via novel reconstruction approaches remains one of the highest impact applications for deep learning in medical imaging. The fastMRI dataset, unique in that it contains large volumes of raw MRI data, has enabled significant advances in accelerating MRI using deep learning-based reconstruction methods. While the impact of the fastMRI dataset on the field of medical imaging is unquestioned, the dataset currently lacks clinical expert pathology annotations, critical to addressing clinically relevant reconstruction frameworks and exploring important questions regarding rendering of specific pathology using such novel approaches. This work introduces fastMRI+, which consists of 16154 subspecialist expert bounding box annotations and 13 study-level labels for 22 different pathology categories on the fastMRI knee dataset, and 7570 subspecialist expert bounding box annotations and 643 study-level labels for 30 different pathology categories for the fastMRI brain dataset. The fastMRI+ dataset is open access and aims to support further research and advancement of medical imaging in MRI reconstruction and beyond.
In neuroimaging, MRI tissue properties characterize underlying neurobiology, provide quantitative biomarkers for neurological disease detection and analysis, and can be used to synthesize arbitrary MRI contrasts. Estimating tissue properties from a single scan session using a protocol available on all clinical scanners promises to reduce scan time and cost, enable quantitative analysis in routine clinical scans and provide scan-independent biomarkers of disease. However, existing tissue properties estimation methods - most often $mathbf{T_1}$ relaxation, $mathbf{T_2^*}$ relaxation, and proton density ($mathbf{PD}$) - require data from multiple scan sessions and cannot estimate all properties from a single clinically available MRI protocol such as the multiecho MRI scan. In addition, the widespread use of non-standard acquisition parameters across clinical imaging sites require estimation methods that can generalize across varying scanner parameters. However, existing learning methods are acquisition protocol specific and cannot estimate from heterogenous clinical data from different imaging sites. In this work we propose an unsupervised deep-learning strategy that employs MRI physics to estimate all three tissue properties from a single multiecho MRI scan session, and generalizes across varying acquisition parameters. The proposed strategy optimizes accurate synthesis of new MRI contrasts from estimated latent tissue properties, enabling unsupervised training, we also employ random acquisition parameters during training to achieve acquisition generalization. We provide the first demonstration of estimating all tissue properties from a single multiecho scan session. We demonstrate improved accuracy and generalizability for tissue property estimation and MRI synthesis.
Although deep learning (DL) has received much attention in accelerated MRI, recent studies suggest small perturbations may lead to instabilities in DL-based reconstructions, leading to concern for their clinical application. However, these works focus on single-coil acquisitions, which is not practical. We investigate instabilities caused by small adversarial attacks for multi-coil acquisitions. Our results suggest that, parallel imaging and multi-coil CS exhibit considerable instabilities against small adversarial perturbations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا