Do you want to publish a course? Click here

Multi-Task Offloading over Vehicular Clouds under Graph-based Representation

239   0   0.0 ( 0 )
 Added by Minghui LiWang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Vehicular cloud computing has emerged as a promising paradigm for realizing user requirements in computation-intensive tasks in modern driving environments. In this paper, a novel framework of multi-task offloading over vehicular clouds (VCs) is introduced where tasks and VCs are modeled as undirected weighted graphs. Aiming to achieve a trade-off between minimizing task completion time and data exchange costs, task components are efficiently mapped to available virtual machines in the related VCs. The problem is formulated as a non-linear integer programming problem, mainly under constraints of limited contact between vehicles as well as available resources, and addressed in low-traffic and rush-hour scenarios. In low-traffic cases, we determine optimal solutions; in rush-hour cases, a connection-restricted randommatching-based subgraph isomorphism algorithm is proposed that presents low computational complexity. Evaluations of the proposed algorithms against greedy-based baseline methods are conducted via extensive simulations.



rate research

Read More

71 - Lixing Chen , Jie Xu 2018
Vehicular Cloud Computing (VCC) is a new technological shift which exploits the computation and storage resources on vehicles for computational service provisioning. Spare on-board resources are pooled by a VCC operator, e.g. a roadside unit, to complete task requests using the vehicle-as-a-resource framework. In this paper, we investigate timely service provisioning for deadline-constrained tasks in VCC systems by leveraging the task replication technique (i.e., allowing one task to be executed by several server vehicles). A learning-based algorithm, called DATE-V (Deadline-Aware Task rEplication for Vehicular Cloud), is proposed to address the special issues in VCC systems including uncertainty of vehicle movements, volatile vehicle members, and large vehicle population. The proposed algorithm is developed based on a novel Contextual-Combinatorial Multi-Armed Bandit (CC-MAB) learning framework. DATE-V is `contextual because it utilizes side information (context) of vehicles and tasks to infer the completion probability of a task replication under random vehicle movements. DATE-V is `combinatorial because it aims to replicate the received task and send the task replications to multiple server vehicles to guarantee the service timeliness. We rigorously prove that our learning algorithm achieves a sublinear regret bound compared to an oracle algorithm that knows the exact completion probability of any task replications. Simulations are carried out based on real-world vehicle movement traces and the results show that DATE-V significantly outperforms benchmark solutions.
102 - Yuanchao Xu , Amal Feriani , 2021
Multi-Agent Reinforcement Learning (MARL) is a challenging subarea of Reinforcement Learning due to the non-stationarity of the environments and the large dimensionality of the combined action space. Deep MARL algorithms have been applied to solve different task offloading problems. However, in real-world applications, information required by the agents (i.e. rewards and states) are subject to noise and alterations. The stability and the robustness of deep MARL to practical challenges is still an open research problem. In this work, we apply state-of-the art MARL algorithms to solve task offloading with reward uncertainty. We show that perturbations in the reward signal can induce decrease in the performance compared to learning with perfect rewards. We expect this paper to stimulate more research in studying and addressing the practical challenges of deploying deep MARL solutions in wireless communications systems.
Graph jobs represent a wide variety of computation-intensive tasks in which computations are represented by graphs consisting of components (denoting either data sources or data processing) and edges (corresponding to data flows between the components). Recent years have witnessed dramatic growth in smart vehicles and computation-intensive graph jobs, which pose new challenges to the provision of efficient services related to the Internet of Vehicles. Fortunately, vehicular clouds formed by a collection of vehicles, which allows jobs to be offloaded among vehicles, can substantially alleviate heavy on-board workloads and enable on-demand provisioning of computational resources. In this paper, we present a novel framework for vehicular clouds that maps components of graph jobs to service providers via opportunistic vehicle-to-vehicle communication. Then, graph job allocation over vehicular clouds is formulated as a non-linear integer programming with respect to vehicles contact duration and available resources, aiming to minimize job completion time and data exchange cost. The problem is addressed for two scenarios: low-traffic and rush-hours. For the former, we determine the optimal solutions for the problem. In the latter case, given the intractable computations for deriving feasible allocations, we propose a novel low complexity randomized graph job allocation mechanism by considering hierarchical tree based subgraph isomorphism. We evaluate the performance of our proposed algorithms through extensive simulations.
This letter studies an ultra-reliable low latency communication problem focusing on a vehicular edge computing network in which vehicles either fetch and synthesize images recorded by surveillance cameras or acquire the synthesized image from an edge computing server. The notion of risk-sensitive in financial mathematics is leveraged to define a reliability measure, and the studied problem is formulated as a risk minimization problem for each vehicles end-to-end (E2E) task fetching and offloading delays. Specifically, by resorting to a joint utility and policy estimation-based learning algorithm, a distributed risk-sensitive solution for task fetching and offloading is proposed. Simulation results show that our proposed solution achieves performance improvements up to 40% variance reduction and steeper distribution tail of the E2E delay over an averaged-based baseline.
Currently, deep neural networks (DNNs) have achieved a great success in various applications. Traditional deployment for DNNs in the cloud may incur a prohibitively serious delay in transferring input data from the end devices to the cloud. To address this problem, the hybrid computing environments, consisting of the cloud, edge and end devices, are adopted to offload DNN layers by combining the larger layers (more amount of data) in the cloud and the smaller layers (less amount of data) at the edge and end devices. A key issue in hybrid computing environments is how to minimize the system cost while accomplishing the offloaded layers with their deadline constraints. In this paper, a self-adaptive discrete particle swarm optimization (PSO) algorithm using the genetic algorithm (GA) operators was proposed to reduce the system cost caused by data transmission and layer execution. This approach considers the characteristics of DNNs partitioning and layers offloading over the cloud, edge and end devices. The mutation operator and crossover operator of GA were adopted to avert the premature convergence of PSO, which distinctly reduces the system cost through enhanced population diversity of PSO. The proposed offloading strategy is compared with benchmark solutions, and the results show that our strategy can effectively reduce the cost of offloading for DNN-based applications over the cloud, edge and end devices relative to the benchmarks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا