No Arabic abstract
Currently, deep neural networks (DNNs) have achieved a great success in various applications. Traditional deployment for DNNs in the cloud may incur a prohibitively serious delay in transferring input data from the end devices to the cloud. To address this problem, the hybrid computing environments, consisting of the cloud, edge and end devices, are adopted to offload DNN layers by combining the larger layers (more amount of data) in the cloud and the smaller layers (less amount of data) at the edge and end devices. A key issue in hybrid computing environments is how to minimize the system cost while accomplishing the offloaded layers with their deadline constraints. In this paper, a self-adaptive discrete particle swarm optimization (PSO) algorithm using the genetic algorithm (GA) operators was proposed to reduce the system cost caused by data transmission and layer execution. This approach considers the characteristics of DNNs partitioning and layers offloading over the cloud, edge and end devices. The mutation operator and crossover operator of GA were adopted to avert the premature convergence of PSO, which distinctly reduces the system cost through enhanced population diversity of PSO. The proposed offloading strategy is compared with benchmark solutions, and the results show that our strategy can effectively reduce the cost of offloading for DNN-based applications over the cloud, edge and end devices relative to the benchmarks.
Vehicular cloud computing has emerged as a promising paradigm for realizing user requirements in computation-intensive tasks in modern driving environments. In this paper, a novel framework of multi-task offloading over vehicular clouds (VCs) is introduced where tasks and VCs are modeled as undirected weighted graphs. Aiming to achieve a trade-off between minimizing task completion time and data exchange costs, task components are efficiently mapped to available virtual machines in the related VCs. The problem is formulated as a non-linear integer programming problem, mainly under constraints of limited contact between vehicles as well as available resources, and addressed in low-traffic and rush-hour scenarios. In low-traffic cases, we determine optimal solutions; in rush-hour cases, a connection-restricted randommatching-based subgraph isomorphism algorithm is proposed that presents low computational complexity. Evaluations of the proposed algorithms against greedy-based baseline methods are conducted via extensive simulations.
Applying Federated Learning (FL) on Internet-of-Things devices is necessitated by the large volumes of data they produce and growing concerns of data privacy. However, there are three challenges that need to be addressed to make FL efficient: (i) execute on devices with limited computational capabilities, (ii) account for stragglers due to computational heterogeneity of devices, and (iii) adapt to the changing network bandwidths. This paper presents FedAdapt, an adaptive offloading FL framework to mitigate the aforementioned challenges. FedAdapt accelerates local training in computationally constrained devices by leveraging layer offloading of deep neural networks (DNNs) to servers. Further, FedAdapt adopts reinforcement learning-based optimization and clustering to adaptively identify which layers of the DNN should be offloaded for each individual device on to a server to tackle the challenges of computational heterogeneity and changing network bandwidth. Experimental studies are carried out on a lab-based testbed comprising five IoT devices. By offloading a DNN from the device to the server FedAdapt reduces the training time of a typical IoT device by over half compared to classic FL. The training time of extreme stragglers and the overall training time can be reduced by up to 57%. Furthermore, with changing network bandwidth, FedAdapt is demonstrated to reduce the training time by up to 40% when compared to classic FL, without sacrificing accuracy. FedAdapt can be downloaded from https://github.com/qub-blesson/FedAdapt.
This letter studies an ultra-reliable low latency communication problem focusing on a vehicular edge computing network in which vehicles either fetch and synthesize images recorded by surveillance cameras or acquire the synthesized image from an edge computing server. The notion of risk-sensitive in financial mathematics is leveraged to define a reliability measure, and the studied problem is formulated as a risk minimization problem for each vehicles end-to-end (E2E) task fetching and offloading delays. Specifically, by resorting to a joint utility and policy estimation-based learning algorithm, a distributed risk-sensitive solution for task fetching and offloading is proposed. Simulation results show that our proposed solution achieves performance improvements up to 40% variance reduction and steeper distribution tail of the E2E delay over an averaged-based baseline.
DNN-based video analytics have empowered many new applications (e.g., automated retail). Meanwhile, the proliferation of fog devices provides developers with more design options to improve performance and save cost. To the best of our knowledge, this paper presents the first serverless system that takes full advantage of the client-fog-cloud synergy to better serve the DNN-based video analytics. Specifically, the system aims to achieve two goals: 1) Provide the optimal analytics results under the constraints of lower bandwidth usage and shorter round-trip time (RTT) by judiciously managing the computational and bandwidth resources deployed in the client, fog, and cloud environment. 2) Free developers from tedious administration and operation tasks, including DNN deployment, cloud and fogs resource management. To this end, we implement a holistic cloud-fog system referred to as VPaaS (Video-Platform-as-a-Service). VPaaS adopts serverless computing to enable developers to build a video analytics pipeline by simply programming a set of functions (e.g., model inference), which are then orchestrated to process videos through carefully designed modules. To save bandwidth and reduce RTT, VPaaS provides a new video streaming protocol that only sends low-quality video to the cloud. The state-of-the-art (SOTA) DNNs deployed at the cloud can identify regions of video frames that need further processing at the fog ends. At the fog ends, misidentified labels in these regions can be corrected using a light-weight DNN model. To address the data drift issues, we incorporate limited human feedback into the system to verify the results and adopt incremental learning to improve our system continuously. The evaluation demonstrates that VPaaS is superior to several SOTA systems: it maintains high accuracy while reducing bandwidth usage by up to 21%, RTT by up to 62.5%, and cloud monetary cost by up to 50%.
Using smart wearable devices to monitor patients electrocardiogram (ECG) for real-time detection of arrhythmias can significantly improve healthcare outcomes. Convolutional neural network (CNN) based deep learning has been used successfully to detect anomalous beats in ECG. However, the computational complexity of existing CNN models prohibits them from being implemented in low-powered edge devices. Usually, such models are complex with lots of model parameters which results in large number of computations, memory, and power usage in edge devices. Network pruning techniques can reduce model complexity at the expense of performance in CNN models. This paper presents a novel multistage pruning technique that reduces CNN model complexity with negligible loss in performance compared to existing pruning techniques. An existing CNN model for ECG classification is used as a baseline reference. At 60% sparsity, the proposed technique achieves 97.7% accuracy and an F1 score of 93.59% for ECG classification tasks. This is an improvement of 3.3% and 9% for accuracy and F1 Score respectively, compared to traditional pruning with fine-tuning approach. Compared to the baseline model, we also achieve a 60.4% decrease in run-time complexity.