Do you want to publish a course? Click here

Risk-Sensitive Task Fetching and Offloading for Vehicular Edge Computing

212   0   0.0 ( 0 )
 Added by Chen-Feng Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This letter studies an ultra-reliable low latency communication problem focusing on a vehicular edge computing network in which vehicles either fetch and synthesize images recorded by surveillance cameras or acquire the synthesized image from an edge computing server. The notion of risk-sensitive in financial mathematics is leveraged to define a reliability measure, and the studied problem is formulated as a risk minimization problem for each vehicles end-to-end (E2E) task fetching and offloading delays. Specifically, by resorting to a joint utility and policy estimation-based learning algorithm, a distributed risk-sensitive solution for task fetching and offloading is proposed. Simulation results show that our proposed solution achieves performance improvements up to 40% variance reduction and steeper distribution tail of the E2E delay over an averaged-based baseline.



rate research

Read More

Recently, unmanned aerial vehicles (UAVs) assisted multi-access edge computing (MEC) systems emerged as a promising solution for providing computation services to mobile users outside of terrestrial infrastructure coverage. As each UAV operates independently, however, it is challenging to meet the computation demands of the mobile users due to the limited computing capacity at the UAVs MEC server as well as the UAVs energy constraint. Therefore, collaboration among UAVs is needed. In this paper, a collaborative multi-UAV-assisted MEC system integrated with a MEC-enabled terrestrial base station (BS) is proposed. Then, the problem of minimizing the total latency experienced by the mobile users in the proposed system is studied by optimizing the offloading decision as well as the allocation of communication and computing resources while satisfying the energy constraints of both mobile users and UAVs. The proposed problem is shown to be a non-convex, mixed-integer nonlinear problem (MINLP) that is intractable. Therefore, the formulated problem is decomposed into three subproblems: i) users tasks offloading decision problem, ii) communication resource allocation problem and iii) UAV-assisted MEC decision problem. Then, the Lagrangian relaxation and alternating direction method of multipliers (ADMM) methods are applied to solve the decomposed problems, alternatively. Simulation results show that the proposed approach reduces the average latency by up to 40.7% and 4.3% compared to the greedy and exhaustive search methods.
While mobile edge computing (MEC) alleviates the computation and power limitations of mobile devices, additional latency is incurred when offloading tasks to remote MEC servers. In this work, the power-delay tradeoff in the context of task offloading is studied in a multi-user MEC scenario. In contrast with current system designs relying on average metrics (e.g., the average queue length and average latency), a novel network design is proposed in which latency and reliability constraints are taken into account. This is done by imposing a probabilistic constraint on users task queue lengths and invoking results from extreme value theory to characterize the occurrence of low-probability events in terms of queue length (or queuing delay) violation. The problem is formulated as a computation and transmit power minimization subject to latency and reliability constraints, and solved using tools from Lyapunov stochastic optimization. Simulation results demonstrate the effectiveness of the proposed approach, while examining the power-delay tradeoff and required computational resources for various computation intensities.
102 - Jia Yan , Suzhi Bi , Lingjie Duan 2020
Provided with mobile edge computing (MEC) services, wireless devices (WDs) no longer have to experience long latency in running their desired programs locally, but can pay to offload computation tasks to the edge server. Given its limited storage space, it is important for the edge server at the base station (BS) to determine which service programs to cache by meeting and guiding WDs offloading decisions. In this paper, we propose an MEC service pricing scheme to coordinate with the service caching decisions and control WDs task offloading behavior. We propose a two-stage dynamic game of incomplete information to model and analyze the two-stage interaction between the BS and multiple associated WDs. Specifically, in Stage I, the BS determines the MEC service caching and announces the service program prices to the WDs, with the objective to maximize its expected profit under both storage and computation resource constraints. In Stage II, given the prices of different service programs, each WD selfishly decides its offloading decision to minimize individual service delay and cost, without knowing the other WDs desired program types or local execution delays. Despite the lack of WDs information and the coupling of all the WDs offloading decisions, we derive the optimal threshold-based offloading policy that can be easily adopted by the WDs in Stage II at the Bayesian equilibrium. Then, by predicting the WDs offloading equilibrium, we jointly optimize the BS pricing and service caching in Stage I via a low-complexity algorithm. In particular, we study both the uniform and differentiated pricing schemes. For differentiated pricing, we prove that the same price should be charged to the cached programs of the same workload.
To overcome devices limitations in performing computation-intense applications, mobile edge computing (MEC) enables users to offload tasks to proximal MEC servers for faster task computation. However, current MEC system design is based on average-based metrics, which fails to account for the ultra-reliable low-latency requirements in mission-critical applications. To tackle this, this paper proposes a new system design, where probabilistic and statistical constraints are imposed on task queue lengths, by applying extreme value theory. The aim is to minimize users power consumption while trading off the allocated resources for local computation and task offloading. Due to wireless channel dynamics, users are re-associated to MEC servers in order to offload tasks using higher rates or accessing proximal servers. In this regard, a user-server association policy is proposed, taking into account the channel quality as well as the servers computation capabilities and workloads. By marrying tools from Lyapunov optimization and matching theory, a two-timescale mechanism is proposed, where a user-server association is solved in the long timescale while a dynamic task offloading and resource allocation policy is executed in the short timescale. Simulation results corroborate the effectiveness of the proposed approach by guaranteeing highly-reliable task computation and lower delay performance, compared to several baselines.
In a vehicular edge computing (VEC) system, vehicles can share their surplus computation resources to provide cloud computing services. The highly dynamic environment of the vehicular network makes it challenging to guarantee the task offloading delay. To this end, we introduce task replication to the VEC system, where the replicas of a task are offloaded to multiple vehicles at the same time, and the task is completed upon the first response among replicas. First, the impact of the number of task replicas on the offloading delay is characterized, and the optimal number of task replicas is approximated in closed-form. Based on the analytical result, we design a learning-based task replication algorithm (LTRA) with combinatorial multi-armed bandit theory, which works in a distributed manner and can automatically adapt itself to the dynamics of the VEC system. A realistic traffic scenario is used to evaluate the delay performance of the proposed algorithm. Results show that, under our simulation settings, LTRA with an optimized number of task replicas can reduce the average offloading delay by over 30% compared to the benchmark without task replication, and at the same time can improve the task completion ratio from 97% to 99.6%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا