No Arabic abstract
Graph jobs represent a wide variety of computation-intensive tasks in which computations are represented by graphs consisting of components (denoting either data sources or data processing) and edges (corresponding to data flows between the components). Recent years have witnessed dramatic growth in smart vehicles and computation-intensive graph jobs, which pose new challenges to the provision of efficient services related to the Internet of Vehicles. Fortunately, vehicular clouds formed by a collection of vehicles, which allows jobs to be offloaded among vehicles, can substantially alleviate heavy on-board workloads and enable on-demand provisioning of computational resources. In this paper, we present a novel framework for vehicular clouds that maps components of graph jobs to service providers via opportunistic vehicle-to-vehicle communication. Then, graph job allocation over vehicular clouds is formulated as a non-linear integer programming with respect to vehicles contact duration and available resources, aiming to minimize job completion time and data exchange cost. The problem is addressed for two scenarios: low-traffic and rush-hours. For the former, we determine the optimal solutions for the problem. In the latter case, given the intractable computations for deriving feasible allocations, we propose a novel low complexity randomized graph job allocation mechanism by considering hierarchical tree based subgraph isomorphism. We evaluate the performance of our proposed algorithms through extensive simulations.
Software-defined internet of vehicles (SDIoV) has emerged as a promising paradigm to realize flexible and comprehensive resource management, for next generation automobile transportation systems. In this paper, a vehicular cloud computing-based SDIoV framework is studied wherein the joint allocation of transmission power and graph job is formulated as a nonlinear integer programming problem. To effectively address the problem, a structure-preservation-based two-stage allocation scheme is proposed that decouples template searching from power allocation. Specifically, a hierarchical tree-based random subgraph isomorphism mechanism is applied in the first stage by identifying potential mappings (templates) between the components of graph jobs and service providers. A structure-preserving simulated annealing-based power allocation algorithm is adopted in the second stage to achieve the trade-off between the job completion time and energy consumption. Extensive simulations are conducted to verify the performance of the proposed algorithms.
The software defined air-ground integrated vehicular (SD-AGV) networks have emerged as a promising paradigm, which realize the flexible on-ground resource sharing to support innovative applications for UAVs with heavy computational overhead. In this paper, we investigate a vehicular cloud-assisted graph job allocation problem in SD-AGV networks, where the computation-intensive jobs carried by UAVs, and the vehicular cloud are modeled as graphs. To map each component of the graph jobs to a feasible vehicle, while achieving the trade-off among minimizing UAVs job completion time, energy consumption, and the data exchange cost among vehicles, we formulate the problem as a mixed-integer non-linear programming problem, which is Np-hard. Moreover, the constraint associated with preserving job structures poses addressing the subgraph isomorphism problem, that further complicates the algorithm design. Motivated by which, we propose an efficient decoupled approach by separating the template (feasible mappings between components and vehicles) searching from the transmission power allocation. For the former, we present an efficient algorithm of searching for all the subgraph isomorphisms with low computation complexity. For the latter, we introduce a power allocation algorithm by applying convex optimization techniques. Extensive simulations demonstrate that the proposed approach outperforms the benchmark methods considering various problem sizes.
Vehicular cloud computing has emerged as a promising paradigm for realizing user requirements in computation-intensive tasks in modern driving environments. In this paper, a novel framework of multi-task offloading over vehicular clouds (VCs) is introduced where tasks and VCs are modeled as undirected weighted graphs. Aiming to achieve a trade-off between minimizing task completion time and data exchange costs, task components are efficiently mapped to available virtual machines in the related VCs. The problem is formulated as a non-linear integer programming problem, mainly under constraints of limited contact between vehicles as well as available resources, and addressed in low-traffic and rush-hour scenarios. In low-traffic cases, we determine optimal solutions; in rush-hour cases, a connection-restricted randommatching-based subgraph isomorphism algorithm is proposed that presents low computational complexity. Evaluations of the proposed algorithms against greedy-based baseline methods are conducted via extensive simulations.
As one of the most promising applications in future Internet of Things, Internet of Vehicles (IoV) has been acknowledged as a fundamental technology for developing the Intelligent Transportation Systems in smart cities. With the emergence of the sixth generation (6G) communications technologies, massive network infrastructures will be densely deployed and the number of network nodes will increase exponentially, leading to extremely high energy consumption. There has been an upsurge of interest to develop the green IoV towards sustainable vehicular communication and networking in the 6G era. In this paper, we present the main considerations for green IoV from five different scenarios, including the communication, computation, traffic, Electric Vehicles (EVs), and energy harvesting management. The literatures relevant to each of the scenarios are compared from the perspective of energy optimization (e.g., with respect to resource allocation, workload scheduling, routing design, traffic control, charging management, energy harvesting and sharing, etc.) and the related factors affecting energy efficiency (e.g., resource limitation, channel state, network topology, traffic condition, etc.). In addition, we introduce the potential challenges and the emerging technologies in 6G for developing green IoV systems. Finally, we discuss the research trends in designing energy-efficient IoV systems.
In the era of big-data, the jobs submitted to the clouds exhibit complicated structures represented by graphs, where the nodes denote the sub-tasks each of which can be accommodated at a slot in a server, while the edges indicate the communication constraints among the sub-tasks. We develop a framework for efficient allocation of graph jobs in geo-distributed cloud networks (GDCNs), explicitly considering the power consumption of the datacenters (DCs). We address the following two challenges arising in graph job allocation: i) the allocation problem belongs to NP-hard nonlinear integer programming; ii) the allocation requires solving the NP-complete sub-graph isomorphism problem, which is particularly cumbersome in large-scale GDCNs. We develop a suite of efficient solutions for GDCNs of various scales. For small-scale GDCNs, we propose an analytical approach based on convex programming. For medium-scale GDCNs, we develop a distributed allocation algorithm exploiting the processing power of DCs in parallel. Afterward, we provide a novel low-complexity (decentralized) sub-graph extraction method, based on which we introduce cloud crawlers aiming to extract allocations of good potentials for large-scale GDCNs. Given these suggested strategies, we further investigate strategy selection under both fixed and adaptive DC pricing schemes, and propose an online learning algorithm for each.