No Arabic abstract
In this paper, we investigate the energy-efficient hybrid precoding design for integrated multicast-unicast millimeter wave (mmWave) system, where the simultaneous wireless information and power transform is considered at receivers. We adopt two sparse radio frequency chain antenna structures at the base station (BS), i.e., fully-connected and subarray structures, and design the codebook-based analog precoding according to the different structures. Then, we formulate a joint digital multicast, unicast precoding and power splitting ratio optimization problem to maximize the energy efficiency of the system, while the maximum transmit power at the BS and minimum harvested energy at receivers are considered. Due to its difficulty to directly solve the formulated problem, we equivalently transform the fractional objective function into a subtractive form one and propose a two-loop iterative algorithm to solve it. For the outer loop, the classic Bi-section iterative algorithm is applied. For the inner loop, we transform the formulated problem into a convex one by successive convex approximation techniques and propose an iterative algorithm to solve it. Meanwhile, to reduce the complexity of the inner loop, we develop a zero forcing (ZF) technique-based low complexity iterative algorithm. Specifically, the ZF technique is applied to cancel the inter-unicast interference and the first order Taylor approximation is used for the convexification of the non-convex constraints in the original problem. Finally, simulation results are provided to compare the performance of the proposed algorithms under different schemes.
We address the problem of analyzing and classifying in groups the downlink channel environment in a millimeter-wavelength cell, accounting for path loss, multipath fading, and User Equipment (UE) blocking, by employing a hybrid propagation and multipath fading model, thus using accurate inter-group interference modeling. The base station (BS) employs a large Uniform Planar Array (UPA) to facilitate massive Multiple-Input, Multiple-Output (MIMO) communications with high efficiency. UEs are equipped with a single antenna and are distributed uniformly within the cell. The key problem is analyzing and defining groups toward precoding. Because equitable type of throughput is desired between groups, Combined Frequency and Spatial Division and Multiplexing (CFSDM) prevails as necessary. We show that by employing three subcarrier frequencies, the UEs can be efficiently separated into high throughput groups, with each group employing Virtual Channel Model Beams (VCMB) based inner precoding, followed by efficient Multi-User Multiple-Input Multiple-Output (MU-MIMO) outer precoders. For each group, we study three different sub-grouping methods offering different advantages. We show that the improvement offered by Zero-Forcing Per-Group Precoding (ZF-PGP) over Zero-Forcing Precoding (ZFP) is very high.
Hybrid analog/digital precoding in millimeter-wave (mmWave) multi-input multi-ouput (MIMO) systems is capable of achieving the near-optimal full-digital performance at reduced hardware cost and power consumption compared to its full-RF digital counterpart. However, having numerous phase shifters is still costly, especially when the phase shifters are of high resolution. In this paper, we propose a novel twin-resolution phase-shifter network for mmWave MIMO systems, which reduces the power consumption of an entirely high-resolution network, whilst mitigating the severe array gain reduction of an entirely low-resolution network. The connections between the twin phase shifters having different resolutions and the antennas are either fixed or dynamically configured. In the latter, we jointly design the phase-shifter network and the hybrid precoding matrix, where the phase of each entry in the analog precoding matrix can be dynamically designed according to the required resolution. This method is slightly modified for the fixed networks hybrid precoding matrix. Furthermore, we extend the proposed method to multi-user MIMO systems and provide its performance analysis. Our simulation results show that the proposed dynamic hybrid precoding method strikes an attractive performance vs. power consumption trade-off.
This paper considers an intelligent reflecting sur-face (IRS)-aided simultaneous wireless information and power transfer (SWIPT) network, where multiple users decode data and harvest energy from the transmitted signal of a transmit-ter. The proposed design framework exploits the cost-effective IRS to establish favorable communication environment to improve the fair energy efficient. In particular, we study the max-min energy efficiency (EE) of the system by jointly designing the transmit information and energy beamforming at the base station (BS), phase shifts at the IRS, as well as the power splitting (PS) ratio at all users subject to the minimum rate, minimum harvested energy, and transmit power constraints. The formulated problem is non-convex and thus challenging to be solved. We propose two algorithms namely penalty-based and inner approximation (IA)-based to handle the non-convexity of the optimization problem. As such, we divide the original problem into two sub-problems and apply the alternating optimization (AO) algorithm for both proposed algorithms to handle it iteratively. In particular, in the penalty-based algorithm for the first sub-problem, the semi-definite relaxation (SDR) technique, difference of convex functions (DC) programming, majorization-minimization (MM) approach, and fractional programming theory are exploited to transform the non-convex optimization problem into a convex form that can be addressed efficiently. For the second sub-problem, a penalty-based approach is proposed to handle the optimization on the phase shifts introduced by the IRS with the proposed algorithms. For the IA-based method, we optimize jointly beamforming vectors and phase shifts while the PS ratio is solved optimally in the first sub-problem...
Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional to the codebook size. To improve the efficiency of beam tracking, we propose a beam tracking scheme based on the channel fingerprint database, which comprises mappings between statistical beamforming gains and user locations. The scheme tracks user movement by utilizing the trained beam configurations and estimating the gains of beam configurations that are not trained. Simulations show that the proposed scheme achieves significant beamforming performance gains over existing beam tracking schemes.
In this paper, we investigate a hybrid multicast/ unicast scheme for a multiple-input single-output cache-aided non-orthogonal multiple access (NOMA) vehicular scenario in the face of rapidly fluctuating vehicular wireless channels. Considering a more practical situation, imperfect channel state information is taking into account. In this paper, we formulate an optimization problem to maximize the unicast sum rate under the constraints of the peak power, the peak backhaul, the minimum unicast rate, and the maximum multicast outage probability. To solve the formulated non-convex problem, a lower bound relaxation method is proposed, which enables a division of the original problem into two convex sub-problems. Computer simulations show that the proposed caching-aided NOMA is superior to the orthogonal multiple access counterpart.