Do you want to publish a course? Click here

Optimizing Josephson-Ring-Modulator-based Josephson Parametric Amplifiers via full Hamiltonian control

57   0   0.0 ( 0 )
 Added by Chenxu Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Josephson Parametric Amplifiers (JPA) are nonlinear devices that are used for quantum sensing and qubit readout in the microwave regime. While JPAs regularly operate in the quantum limit, their gain saturates for very small (few photons) input power. In a previous work, we showed that the saturation power of JPAs is not limited by pump depletion, but instead by the high-order nonlinearity of Josephson junctions, the nonlinear circuit elements that enable amplification in JPAs. Here, we present a systematic study of the nonlinearities in JPAs, we show which nonlinearities limit the saturation power, and present a strategy for optimizing the circuit parameters for achieving the best possible JPA. For concreteness, we focus on JPAs that are constructed around a Josephson Ring Modulator (JRM). We show that by tuning the external and shunt inductors, we should be able to take the best experimentally available JPAs and improve their saturation power by $sim 15$ dB. Finally, we argue that our methods and qualitative results are applicable to a broad range of cavity based JPAs.



rate research

Read More

46 - T.-C. Chien , O. Lanes , C. Liu 2019
Josephson-junction based parametric amplifiers have become a ubiquitous component in superconducting quantum machines. Although parametric amplifiers regularly achieve near-quantum limited performance, they have many limitations, including low saturation powers, lack of directionality, and narrow bandwidth. The first is believed to stem from the higher order Hamiltonian terms endemic to Josephson junction circuits, and the latter two are direct consequences of the nature of the parametric interactions which power them. In this work, we attack both of these issues. First, we have designed a new, linearly shunted Josephson Ring Modulator (JRM) which nearly nulls all 4th-order terms at a single flux bias point. Next, we achieve gain through a pair of balanced parametric drives. When applied separately, these drives produce phase-preserving gain (G) and gainless photon conversion (C), when applied together, the resultant amplifier (which we term GC) is a bi-directional, phase-sensitive transmission-only amplifier with a large, gain-independent bandwidth. Finally, we have also demonstrated the practical utility of the GC amplifier, as well as its quantum efficiency, by using it to read out a superconducting transmon qubit.
Single-mode Josephson junction-based parametric amplifiers are often modeled as perfect amplifiers and squeezers. We show that, in practice, the gain, quantum efficiency, and output field squeezing of these devices are limited by usually neglected higher-order corrections to the idealized model. To arrive at this result, we derive the leading corrections to the lumped-element Josephson parametric amplifier of three common pumping schemes: monochromatic current pump, bichromatic current pump, and monochromatic flux pump. We show that the leading correction for the last two schemes is a single Kerr-type quartic term, while the first scheme contains additional cubic terms. In all cases, we find that the corrections are detrimental to squeezing. In addition, we show that the Kerr correction leads to a strongly phase-dependent reduction of the quantum efficiency of a phase-sensitive measurement. Finally, we quantify the departure from ideal Gaussian character of the filtered output field from numerical calculation of third and fourth order cumulants. Our results show that, while a Gaussian output field is expected for an ideal Josephson parametric amplifier, higher-order corrections lead to non-Gaussian effects which increase with both gain and nonlinearity strength. This theoretical study is complemented by experimental characterization of the output field of a flux-driven Josephson parametric amplifier. In addition to a measurement of the squeezing level of the filtered output field, the Husimi Q-function of the output field is imaged by the use of a deconvolution technique and compared to numerical results. This work establishes nonlinear corrections to the standard degenerate parametric amplifier model as an important contribution to Josephson parametric amplifiers squeezing and noise performance.
68 - V. V. Sivak , S. Shankar , G. Liu 2019
We introduce a novel near-quantum-limited amplifier with a large tunable bandwidth and high dynamic range - the Josephson Array Mode Parametric Amplifier (JAMPA). The signal and idler modes involved in the amplification process are realized by the array modes of a chain of 1000 flux tunable, Josephson-junction-based, nonlinear elements. The frequency spacing between array modes is comparable to the flux tunability of the modes, ensuring that any desired frequency can be occupied by a resonant mode, which can further be pumped to produce high gain. We experimentally demonstrate that the device can be operated as a nearly quantum-limited parametric amplifier with 20 dB of gain at almost any frequency within (4-12) GHz band. On average, it has a 3 dB bandwidth of 11 MHz and input 1 dB compression power of -108 dBm, which can go as high as -93 dBm. We envision the application of such a device to the time- and frequency-multiplexed readout of multiple qubits, as well as to the generation of continuous-variable cluster states.
Achieving individual qubit readout is a major challenge in the development of scalable superconducting quantum processors. We have implemented the multiplexed readout of a four transmon qubit circuit using non-linear resonators operated as Josephson bifurcation amplifiers. We demonstrate the simultaneous measurement of Rabi oscillations of the four transmons. We find that multiplexed Josephson bifurcation is a high-fidelity readout method, the scalability of which is not limited by the need of a large bandwidth nearly quantum-limited amplifier as is the case with linear readout resonators.
Josephson parametric amplifiers (JPA) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited amplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs, three of them exhibiting a hysteretic dependence of the resonant frequency versus the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices (dc-SQUID), which provide the JPA nonlinearity, for a finite screening parameter $beta_mathrm{L},{>},0$ and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا